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ABSTRACT

Integration of multiple computing paradigms onto system on chip (SoC) has pushed the

boundaries of design space exploration for hardware architectures and computing system soft-

ware stack. The heterogeneity of computing styles in SoC has created a new class of architec-

tures referred to as Heterogeneous Architectures. Novel applications developed to exploit the

different computing styles are user centric for embedded SoC. Software and hardware designers

are faced with several challenges to harness the full potential of heterogeneous architectures.

Applications have to execute on more than one compute style to increase overall SoC resource

utilization. The implication of such an abstraction is that application threads need to be poly-

morphic. Operating system layer is thus faced with the problem of scheduling polymorphic

threads. Resource allocation is also an important problem to be dealt by the OS. Morphism

evolution of application threads is constrained by the availability of heterogeneous computing

resources. Traditional design optimization goals such as computational power and lower energy

per computation are inadequate to satisfy user centric application resource needs. Resource

allocation decisions at application layer need to permeate to the architectural layer to avoid

conflicting demands which may affect energy-delay characteristics of application threads. We

propose Polymorphic computing abstraction as a unified computing model for heterogeneous

architectures to address the above issues. Simulation environment for polymorphic applications

is developed and evaluated under various scheduling strategies to determine the effectiveness

of polymorphism abstraction on resource allocation. User satisfaction model is also developed

to complement polymorphism and used for optimization of resource utilization at application

and network layer of embedded systems.
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CHAPTER 1. INTRODUCTION

Embedded systems are traditionally characterized by strict real time constraints, low power

consumption and dedicated functionality. Modern definition of embedded system has expanded

the characterization contour to include mobile computing systems. Examples of mobile com-

puting systems include 1) content consumption devices such as smart phones, tablets and 2)

emerging technology such as wearable computing products. Mobile computing systems use gen-

eral purpose multicore chips, variants of Linux operating system and complex user interaction

based interface. Mobile computing systems also have slack in meeting deadline constraints and

tend to search for performance-power optimal solutions in the design space.

Multicore architectures [TI, Nvi] are the current hardware solution to mitigate challenges

due to increasing wire delays and leakage current. These issues dominate VLSI design as the

gate length of transistors approaches the diameter of atom in future technology nodes. The

number of compute cores, which can vary in energy-delay profiles, integrated in multicore archi-

tectures is increasing with each product cycle to target computation needs of novel applications

[EDFL13, LSMW11, SKPK10] in embedded systems. The implication of multicore architec-

tures and novel applications is non-trivial for the problem of design space exploration. This

thesis presents the concept of polymorphism, user satisfaction and experiments on network-on-

chip model to explore the design space offered by multicore architectures. The next section

motivates the idea of Polymorphism in the context of multicore architectures.

1.1 Polymorphism

Applications are abstracted as communicating threads primarily to share compute resources

with other applications. Threads also increase resource utilization from operating system (OS)



www.manaraa.com

2

perspective. However, threads are statically bound to a specific compute resource such as CPU,

FPGA, GPU at application design phase. For example, a thread applying a smoothing filter

to a video frame will be executed on CPU while another kernel thread which computes motion

compensation vectors is bound to GPU during the design phase of video decoder application.

The resources on multicore architecture will be under-utilized by such static allocation policies.

The OS scheduler is denied the choice of resource allocation for a thread if such a thread can

utilize more than one resource in the hardware platform at run time. The restriction of static

binding can be loosened in such cases. The thread morphs itself into an available morphism or

avatar to take advantage of dynamic set of resources in each scheduling cycle and hence, threads

are polymorphic. In polymorphic context, morphisms are alternate ways of implementing the

thread’s function. A thread’s morphism decides the resource consumption and its contribution

to the application performance metric. The morphisms differ in their resource requirements

to implement a thread’s functionality in a given hardware platform. Hence, every possible

morphism may not be supported across different platforms. For example, let us assume that

a mobile internet browser thread has three morphisms. The first thread morphism (M1) may

be tuned for faster execution of all text and multimedia contents of the webpage, a second

morphism (M2) may be optimized for memory storage such as bandwidth while loading the

page, while the third (M3) may be designed to operate in a power-saver mode in which only

text will be shown. Moreover, a threads behavior could be completely implemented in software.

Multiple software implementations are possible for a thread by changing the algorithm used to

realize its functionality, which is another way to realize morphisms.

The burden is on the OS scheduler to choose an appropriate morphism at run time for one

or more ready to run threads depending on the optimization goal of interest. The scheduler

has the flexibility to choose from the three morphisms (M1,M2,M3) for the browser thread.

M1,M2 and M3 may have different resource requirements. Resource requirements need to be

satisfied before a thread can morph into a specific morphism. For example, in the browser

thread, M1 may use 1 CPU for I/O related functions such as mouse click or text inputs, 1

CPU for loading/executing java applets, 2 FPGA tiles for multimedia content. Similarly, M2

may use 3 CPUs - one for I/O related functions, one for loading/executing java applets and
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one hyper-threading capable CPU for multimedia content. Finally, M3 may use a low power

CPU to execute load text only portion of the webpage. The availability of variegated computing

resources is commonplace in contemporary embedded multicore architectures [TI, Nvi] and such

architectures are the vanguard to achieve the projected performance doubling in current and

future VLSI technology nodes. Polymorphic thread paradigm stitches piece-wise performance-

energy profiles to explore multicore architecture design space. The browser thread can exist in

M1 , M2 or M3 morphism, each with different performance-energy profile, during the lifetime

of the browser application. The convenience of choosing a morphism will be shown to result

in better utilization of compute resources and hence, performance improvement in a multicore

platform when compared with statically bound threads. The motivation for user satisfaction,

which is an optimization goal for polymorphic thread paradigm based embedded system design,

is presented next.

Existing optimization goals at the hardware layer in VLSI design target low level parameters

such as power, delay or some function of these. Mature EDA tools optimize low level param-

eters for average case design points. Higher level abstractions (OS layer, APP layer) further

focus on average case by being oblivious to varying resource allocation needs of threads. Such

optimization metrics are usually monotonic in the sense that there is minimal a priori informa-

tion about the application characteristics. Traditional computing systems such as webservers,

personal computers which are characterized by low degree of user interaction have benefited

from monotonous metrics used in the OS scheduler. However, the degree of user interaction in

embedded system is very much different compared to traditional computing systems. A typ-

ical usage scenario of smartphone is short bursts of activity followed by periods of inactivity.

The OS scheduler is under duress to choose morphism for one or more threads and use or free

resources to satisfy the morphism resource requirements. The application’s ability to continue

execution is dependent on scheduling policies in such embedded systems. For example, an

application will be terminated if it fails to respond in 5 seconds in iOS. Hence, the scheduler is

on a short leash and should provide best effort resource allocation for the user behavior in that

short time window. Traditional methods of allocating resources such as earliest deadline first,

first come first serve will fall short to optimize a given design parameter in scenarios where
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user behavior is not taken into account. Alternatively, the problem of resource allocation can

be addressed by modeling the user perception of an application. Resources are only allocated

to the application to satisfy the user perception and any resource allocated beyond this limit

is not going to change the perceived satisfaction of the user due to the incremental resource

allocation. Hence, the scheduler may use extra resource for other threads to further increase

the user satisfaction. The next section describes the need for modeling of user satisfaction as

an optimization function.

1.2 User satisfaction

Human sensory interfaces are naturally redundant. Redundant information is provided

to the brain through one or more sensory interface such as visual system, auditory system,

olfactory and other biological systems. Further, the range of sensory stimulus to which a

given sensory interface responds is also limited. This is especially true and clearly observed for

visual and auditory system. Human Audio/Visual System (HAVS) under certain conditions

such as changing lighting effects takes finite time to adapt. This effect is taken into account

for computer graphics generated scenes to give a realistic effect when a subject enters into

a dark room from bright light. Perception is the model built by the brain to make sense

of the information relayed by sensory interfaces. Consider, a human subject watching movie

on a 1080p screen and 720p screen standing at a distance. The ability to resolve details in

the image projected on the screen falls as the distance increases. At a specific distance from

the screen, the subject will perceive both images to be identical which implies the subject

cannot differentiate between the screen resolutions. This is due to the limitation of HAVS

to resolve spatial frequencies. Under low lighting conditions, the ability of HAVS to detect

color differences is poor but it is sensitive to changes in illumination. Again such differences in

response arise due to the asymmetry in HAVS. The cone photoreceptors in HAVS is responsible

for color vision and the lower number of these receptors limits the color sensitivity.

Applications interacting with HAVS and using compute resources to optimize design pa-

rameters are also limited by HAVS characteristics. The limitation arises due to the inability

of HAVS to distinguish between two outputs of an application, O1 and O2, which use different
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compute resources, R1 and R2. Hence, it may be advantageous to choose the application output

which uses lower compute resources in situations such as energy optimization. For example,

frame rate and resolution are the primary parameters of a video decoding application which

decide the amount of resource consumed. Assuming a constant resolution, varying the frame

rate gives different experiences for users depending on the nature of the application. The final

interaction of a video decoding application is with HAVS which limits the user experience when

measured as a function of frame rate. A video playback at 100 fps (frames per second) (O1)

is essentially indistinguishable from 30 fps (O2) for most videos due to inability of HAVS to

notice any significant variation in spatial frequency of the image. The compute resources (

GPU, CPU - R1 ) allocated to have video playback at 100 fps may be used to better display

the video at 30 fps (CPU - R1) with an anti-aliasing filter running on the GPU. This scenario

will result in better user satisfaction rather than optimizing in one dimension (fps). Similarly,

video playback below 15 fps will result in choppy video and audio synchronization problems.

Reclaiming compute resources from the video application in this scenario will further degrade

the user satisfaction. The user satisfaction in the region between 15 fps and 30 fps is user

behavior dependent and is expected to be non-linear. This characteristic of HAVS which deter-

mines the user’s perceived satisfaction is modeled using a sigmoid function. The resources are

allocated to maximize user satisfaction in this work and the results are compared with existing

thread scheduling policies. The next section introduces the experimental framework used in

this thesis for design space exploration of multicore architectures.

1.3 Network on chip model

Multicore chips have two or more compute resource and interconnection network to facilitate

communication between compute cores. Further, there are input/output cores, cache and

other peripherals which may use the interconnection network. Multicore chips are customized

to the target market by integrating various combinations of compute resource, memory, I/O

and interconnection network into single chip systems referred to as systems-on-chip (SoC).

SoCs have been widely used in embedded computing devices and are predicted to dominate

handheld, tablet devices market. Early SoC architectures used few cores and other peripherals.
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Hence, simple interconnection networks such as point to point, rings, ad hoc networks worked

well to optimize the digital logic for maximum clock frequency. However, due to increasing

wire delays below 22nm technology node, the previous digital design techniques for global

clocking cannot be sustained. Further, scalability is limited in ad hoc, point to point, ring

networks. Network-on-chip (NoC) is a communication abstraction model for various styles of

interconnection networks.

NoC paradigm is based on globally asynchronous locally synchronous design principle which

mitigates the effect of propagation delay of clock signal due to increasing global interconnect

resistance. Asynchronous transfer of information between locally synchronous components in

NOC decouples communication characteristics of the network from compute core design param-

eters. This allows for NoC components to be designed independently. Due to the asynchronous

nature of communication in NoC, communicating entities (threads, CPUs etc.) are free to

ignore global clock synchronization problems. NOC abstraction floor plan is illustrated in

Figure 1.1. It is composed of two major abstractions - compute cores and interconnection

network.

NODE 0

R

NODE 1

R

NODE 2

R

NODE 3

R

NODE 4

R

NODE 5

R

NODE 6

R

NODE 7

R

NODE 8

R

9 Node Mesh NoC

Figure 1.1: Generic Multicore Architecture

The properties of compute resources are abstracted by nodes of the NoC. Nodes can rep-

resent different computing styles such as CPU, FPGA or GPU. The interconnection network

shown in Figure 1.1 is a mesh network. Nodes interface to the interconnection network through
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router (R in Figure 1.1). Routers can receive and transmit data packets through the network.

This enables communication between nodes. The internal architecture of router consists of

buffers, arbiter, ports and control logic to perform the various functions needed by applica-

tions using the NoC model. Storing and forwarding data packets, assigning buffer resources

to packets, granting port to winning data packets are some basic functions of router. Poly-

NoC is our implementation of a polymorphic NoC simulation environment capable of executing

polymorphic applications. The simulation environment is parametrized to model different con-

figurations of NoC. User satisfaction based scheduling is built into the scheduling layer of the

PolyNoC software stack. The ideas introduced in Section 1.1 and Section 1.2 are evaluated

using PolyNoC for audio and video benchmarks. Traditional scheduling policies are compared

against the user satisfaction model based scheduling developed in this thesis by simulating

polymorphic audio and video application threads.

1.4 Thesis Contributions

Future embedded multicore architectures will have compute resources with diverse energy-

delay profiles. Current design methodologies in SoC operating systems and development tools

limit the exploitation of diverse compute resources for energy and delay optimization. Our

goal in polymorphic computing is to provide a large spectrum of energy-delay choices using few

design points in the energy-delay space. We achieve this by proposing polymorphic threads

which can execute on more than one style of compute resource by morphism evolution. We

propose user satisfaction model for the application layer and network layer as an optimiza-

tion goal. Scheduling of threads and allocation of resources based on user satisfaction is our

solution to exploit the diverse energy-delay compute resources offered by embedded multicore

architectures. The main contributions of this thesis are :
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• We have developed two polymorphic applications namely, audio and video decoder, for

evaluating the ideas developed in this work. The multi-threaded applications are imple-

mented in C++. Application threads are parametrized to have two morphisms - CPU

and FPGA.

• We have developed a heterogeneous multicore simulation framework, PolyNoC, for ap-

plication layer user satisfaction optimization. User satisfaction model based on sigmoid

function is built into the scheduling layer. Application threads use PolyNoC APIs to

interface with our simulation framework.

• The user satisfaction model proposed for application layer is extended to the NoC routers

for developing virtual channel allocation heuristic. We develop an energy model to eval-

uate the effect of resource allocation on user satisfaction under scenarios where energy is

at a premium.

• Our dynamic binary translator, TCM framework, is also integrated into the PolyNoC

simulation engine to enable designers to experiment with dynamic optimizations using

wrappers embedded in applications.

1.5 Organization

The remainder of this thesis is organized as follows. The reader can find brief review of prior

research literature related to this work in Chapter 2. We discuss energy-delay space expansion in

the context of polymorphic system design in Chapter 3. User satisfaction model for application

layer and network layer is developed in Chapter 4. Chapter 5 provides a detailed description

of PolyNoC simulation framework. User satisfaction model for routers in the network layer is

discussed in Chapter 6. In Chapter 7, the integration of TCM framework with PolyNoC is

described and evaluated. The thesis is concluded in Chapter 8 by noting our contributions and

suggesting possible future extensions.
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CHAPTER 2. REVIEW OF PRIOR RESEARCH LITERATURE

A brief background of multicore architectures is presented in Section 2.1. Section 2.2 re-

views prior work on pertinent issues addressed by past research related to network on chip

communication paradigm. The effect of modeling user satisfaction on performance optimiza-

tion in embedded systems is reviewed in Section 2.3. Operating system design issues addressed

in previous research is reviewed in Section 2.4.

2.1 Background

Monotonic trend in microprocessor design metrics over the past few decades is largely

attributed to transistor scaling. Steady increase in clock speed, instruction throughput and

transistor count can be traced to advances in fabrication technology. Faster transistors, facili-

tated by scaling of transistor gate lengths, have resulted in 300x increase in clock frequency as

evidenced from the data for Intel x86 processors over the last three decades (Figure 2.1).

Similarly, transistor count has doubled every two years in accordance with Moore’s law

[Moo98] due to the result of aggressive fabrication techniques as illustrated in Figure 2.2. The

positive trend of Figure 2.1, due to scaling, has been counteracted by lack of proportional

scaling in electrical parameters of the transistor such as threshold voltage, leakage current,

interconnect parasitic and supply voltage. The lack of reduction in interconnect parasitic and

leakage current is particularly problematic when scaling approaches 22nm technology node and

beyond.

Power dissipation and power density have not scaled in step with increase in transistor

density shown in Figure 2.2. Power depends on supply voltage which has not seen the same

scaling factor used to reduce transistor gate lengths. Cooling demand for high performance
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Figure 2.1: Clock frequency trend for Intel x86 Microprocessor Series

servers and shrinking power budget of mobile chips are some reasons which forecast lower power

requirement specification in the future. For a fixed power budget, the doubling of transistors

at every technology node ensures that half the transistors will be dark.

Designers have adopted several techniques to combat power wastage. Clock gating, sleep

states, dynamic voltage/frequency scaling are representative of digital design methods which

attempt to minimize dynamic power due to unnecessary transistor switching activity. Dis-

covering redundancy in implementation and harvesting the power savings subject to minimal

overhead is the underlying strategy. It is imperative to exploit redundancy at all levels of sys-

tem design - applications, operating system, architecture and digital design to satisfy stringent

design constraints. Research addressing digital design such as logic synthesis, floor planning,

timing analysis have been automated with CAD tools and these tools produce well optimized

designs for performance, power or some combination of these. Continued innovations in com-

puter architecture aimed at circumventing power wall and stagnation of clock frequency have

ushered in homogeneous and heterogeneous multicore chips as potential solutions. Homoge-

neous and heterogeneous chips have seen wide spread integration in both high performance and

mobile computing systems. Multicore architectures can be broadly classified based on the type
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of compute cores and the connectivity between cores. Homogeneous multicore architectures

use the same type of compute core for all the nodes. Alternatively, heterogeneous multicore

architectures use variegated compute cores with multiple energy-delay profiles. Connectivity

supported between cores can be crossbar, ring, taurus or mesh. For example, Graphics Pro-

cessing Unit (GPU) architecture [ND10] employ array of identical stream processors as the

compute cores. A hardware scheduler manages mapping threads to stream processors. CUDA

framework simplifies programming of GPUs which has led to the widespread acceptance of

this homogeneous multicore architecture. The OMAP 4 [TI] embedded processor series from

Texas Instruments uses various compute cores optimized for different applications. Two ARM

cores, a graphic accelerator and an image signal processing engine integrated in TI OMAP 4

are spread out in the energy-delay spectrum.

Multiple compute cores offer larger design space for optimizing application performance and

power consumption. Compute cores differing in energy-delay characteristics further widens

the design space. Thus, all levels of system design need to explore favorable optimization

points in the enlarged design space. Applications must be aware of multiple compute cores.

Multi-threading is a technique in which independent threads can execute simultaneously by

identifying redundancy in data. Threads can be morphed to execute on various compute cores

such as FPGA, GPU or CPU. Mapping application threads to this design space is a challenge

feverishly addressed in research. Operating system is yet another component of the ecosystem
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which need to be modified to be aware of the multicore model. Traditional techniques of

designing each layer separately also impacts the overall design goal where each layer may have

conflicting optimization goals and costs. A uniform cost metric at multiple design abstraction

layer will benefit the system as a whole.

Mobile systems are optimized for a high degree of interaction from the end users. End

user essentially becomes part of the mobile ecosystem. Further, humans are a major source of

redundancy which could be exploited for optimizing performance and energy. The argument for

customized architecture [SAW+10] is strong in mobile systems when subject to the constraints

of balancing power and performance for varying user behavior.

Research efforts related to mobile computing systems touches on issues in multicore archi-

tecture exploration for performance/power, thread scheduling/mapping heuristics at operating

system layer and modeling user interaction. The following sections will provide an overview of

related research work.

2.2 Issues in Network on chip design

NoC based system on chip (SoC) design has been studied extensively in research literature.

The authors of [DT01] advocate using NoC communication paradigm to overcome low global

wire utilization and other issues. Efforts to estimate the overhead of network logic required for

packet based information exchange between NoC nodes is presented in [DT01]. The presence

of shared network resources increases the utilization factor. Dedicated global wires between

top level system modules/nodes suffer from poor utilization during idle times. Networked

global wires on the other hand are shared among all the nodes of the NoC and hence, the

utilization factor is increased. They [DT01] report an area overhead of 6.6% for the added

network logic per NoC node. Buffer resources, arbitration logic, virtual channel allocation

policy, routing strategy, flow control logic and crossbar allocation are major functional elements

of the router interface. Virtual channel (VC) abstraction mitigates the effect of locking physical

buffering resources by packets from a single communication flow. Downstream events such as

unavailability of input buffer credit and congestion can block egress of packets from the current

router. Hence, network throughput is heavily dependent on packet egress rate of routers in
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the flow path. Packet egress rate depends on VC allocation policy to a large extent and

subsequently, a large fraction of research is devoted to study of effect of various VC allocation

policies on network throughput. The use of VC in [Dal90] increases the throughput of network

by a factor of 4 and also reduces the dependency of throughput on network depth. A detailed

theoretical analysis of VC based flow control and experimental evaluation of latency, throughput

for various traffic conditions is also given in [Dal90]. Architecture of router determines latency

and throughput of packets transiting through to destination NoC node. Pipelined VC router

logic improves throughput by 40% over wormhole router in the data presented in [PD01b,

PD01a]. A router delay model which parametrizes flow control method, cross bar delay due to

sharing, virtual channels is also presented in [PD01b, PD01a] to validate claims of efficiency

of VC based pipelining of router logic. Experiments using the router delay model of [PD01b]

predicts per NoC node latency is constant upto 8 VC per physical channel and hence, the result

supports using VC for better throughput at minimal increase in per node latency. The literature

work in [DT01, Dal90, PD01b, PD01a] should provide a wholesome overview of NoC router

function and design specifications. Several literature surveys [TLHC12, BM06] will enlighten

the reader to better understand NoC based design issues.

Mapping computation to NoC nodes is an optimization problem at the operating system

layer. Application threads will be assigned to NoC nodes depending on the compute resource

in need (such as FPGA, CPU, GPU), congestion conditions, hops needed to reach destination.

Energy per packet traversal is directly proportional to path length in the NoC. Mapping algo-

rithms in prior research optimize number of hops between communicating threads to minimize

energy for communication. It is beneficial to map threads to NoC nodes which are not in

congestion zone even if traversal path length is longer. Longer traversal path length will result

is higher initial latency but higher throughput if there is minimal congestion. However, packets

may spend longer time in buffers waiting for egress ports in congested paths thus increasing

latency while decreasing throughput at higher energy expense per packet. Thus, tradeoffs exist

between number of hops, energy per packet, latency and throughput at the mapping phase.

The authors of [HM04a] propose an energy aware scheduling algorithm for statically mapping

and scheduling an application’s tasks on heterogeneous NoC. They formulate an optimization
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problem dependent on energy of computation per NoC node and energy of the volume of bits

communicated between two tasks. A mapping of tasks to NoC node which results in minimiza-

tion of the total energy over all computations and communications is the optimal solution. The

authors develop heuristics to arrive at sub-optimal solutions due to NP-hardness of the original

optimization problem. Experiments in [HM04a] on multimedia applications demonstrate an

average energy savings of 44% when compared to task mappings generated by earliest deadline

first scheduling strategy.

2.3 Issues in User satisfaction modeling

User satisfaction has been difficult to quantify due to its dependence on human perception

unlike other design parameters like delay, power, energy. Despite this drawback, user satis-

faction remains an important design parameter for highly interactive embedded systems such

as smart phones and hand held devices. The authors of [SOM+08] develop a model that re-

lates user satisfaction with measurements of performance counter values for a representative

class of applications. They build a neural network model from observations of performance

counter to predict user satisfaction at run time. Predicted user satisfaction is further used to

vary the frequency and voltage of the processor to reduce CPU power consumption. A 25%

reduction in CPU power is reported for a class of applications using this methodology. Though

the authors of [SOM+08] quantify user satisfaction in terms of architectural parameters, they

do not discuss techniques to improve user satisfaction or suggest novel architectural solutions.

In [CM10a], an user centric design methodology is proposed for NOC type architectures. The

authors of [CM10a] collect behaviour traits of users for various applications and cluster them

into different classes. They claim to optimize system design to better adapt to user require-

ments for each class. The goal is to balance workload variations according to user experiences

in embedded systems. An average energy savings of 30% is reported in [CM10a] using this tech-

nique. The authors of [CM10b] propose a dynamic scheme for allocating applications tasks to

embedded multiprocessor considering the end user behaviour while making resource allocation

decisions. They claim to have achieved 70% communication energy savings by minimizing the

communication cost in NOC implementation of multiprocessor embedded system. The work
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in [ZPT14] also uses user satisfaction modeling to answer questions about the effect of limited

energy source on scheduling behavior in polymorphic framework.

2.4 Operating system design for Heterogeneous computing

Heterogeneous computing systems present several challenges for designing operating sys-

tem components. Hardware platforms in which reconfigurable fabric is interspersed with high

performance CPU cores require thread abstractions for both compute styles. The H-threads

programming model for FPGA-CPU hybrid computing hardware is described in [ANA04] and

[PAA+06]. They have introduced the abstraction at process level. The H-threads program-

ming model abstracts FPGA/CPU components to form a unified multiprocessor architecture

platform. Hence, the designer is freed from specifying and embedding platform specific in-

structions for communicating across the Hardware/Software interface. However, the H-threads

model falls short of investigating the important parts of embedded system design such as the

scheduler, dynamic binding of unit of computation, virtualization and relocatability. The poly-

morphic design paradigm described in this thesis addresses the effect of choosing computing

styles on the application performance at run time. Another limitation of H-threads is that it is

designed for a single bus based system unlike polymorphic paradigm where we consider more

powerful NoC based embedded systems. The other relevant works on operating system design

for heterogeneous platforms are discussed in [MNC+03], [NAE+08], [NCV+03]. The work in

[MNC+03] explores the relocation issues between hardware and software tasks by implementing

a relocatable video decoder. They find that reconfiguration delay in FPGA is an impediment

to performance during hardware task relocation. The decoding rate achieved falls in the range

of normal video playback providing proof that even with reconfiguration overhead it is possible

to effectively use heterogeneous computing systems under polymorphic abstraction. CUDA

programming model [Cud] uses compiler directives to marshal parallel sections of the appli-

cation to the GPU computing cores in Tegra [Nvi] like heterogeneous computing platforms.

The hardware scheduler takes care of allocating resources to groups of threads which follow the

same path in the control flow graph. The design of GPU scheduler is not open source.
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Mobile OS frameworks such as Android modify existing Linux scheduler to balance resource

allocation between interactive and background threads. CPU time slice is the primary resource

managed by the Linux scheduler and it is allocated to threads based on a combination of

heuristics, priority and notion of time. Linux kernel 2.6 ushered in the O(1) scheduler to provide

an upper bound on the time required to pick the next thread which will get the CPU time slice

in the current scheduling epoch. An active queue holds threads with unfinished time quanta and

an expired queue holds threads with completed time quanta in the current scheduling epoch.

The queues are swapped once all threads in active queue move to expired queue after expiring

of time quanta. Swapping starts a new scheduling epoch. However, interactive threads face

the danger of unpredictable delays by waiting in the expired queue until all threads in active

queue migrate to the expired queue. Further, the decision to place threads in priority queue

used heuristics such as ratio of sleep time to CPU time to gauge the interactivity level of the

thread, processor affinity etc. Linux 2.6.21 introduced the Completely Fair Scheduler (CFS)

[CFS] to address the unbounded latency problem of threads in the expired queue and also being

fair to all threads without using too many heuristics. CFS assigns an unfairness value to each

thread which is in need of CPU time. Unfairness measures the amount of time a thread spends

waiting for CPU time. CFS orders threads based on unfairness using a red-black tree data

structure. The thread treated most unfairly is on the leftmost node of the tree and is picked by

CFS in O(log N) time to execute next by following left most path for N ready to run threads.

Inserting new threads and adding waking up threads are also O(log N) time in the red-black

tree structure. This scheme mimics a multitasking CPU executing N concurrent threads each

getting only 1
N th of the CPU power. The notion of fairness is simulated using the unfairness

value for waiting threads which get priority for execution in future time slices of the current

scheduling phase.
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CHAPTER 3. POLYMORPHIC COMPUTING SYSTEM

Mobile platforms have become omnipresent. They serve as terminals to access services from

the cloud. Compute intensive applications such as searching have been migrated to high perfor-

mance systems in the cloud backbone. Interactive applications on mobile devices access various

services such as searching, streaming, storage etc. from the cloud. Interactive applications im-

pose tight design constraints [App14] on hardware architectures for embedded systems. This

makes the traditional performance (time or throughput) driven resource allocation outdated

for these devices.

Within a mobile system context, energy efficiency is of paramount importance. The delay

or response time is also critical in the mobile devices. Fast Launch, Short Use Apps is how

Apple [App14] characterizes a typical iPhone/iPad app in its iOS Application Programming

Guide. In fact, UI responsiveness is one of the holy grails of app development emphasized time

and again in all Apple and Google Android literature. If an app does not respond within 5s,

iOS will terminate it, and Android will issue an ANR (App not responsive) notification. This

is how Apple iOS programming guide describes an app: The strength of iOS-based devices is

their immediacy. A typical user pulls a device out of a pocket or bag and uses it for a few

seconds, or maybe a few minutes, before putting it away again. ... Your own applications need

to reflect that sense of immediacy by launching and getting up and running quickly. If your

application takes a long time to launch, the user may be less inclined to use it..

Embedded systems have to be adaptable and scalable to meet the unique resource demands

of such applications to deliver satisfactory performance. Effective sharing of system resources by

content consumption applications (streaming, storage) is imperative for user satisfaction. For

example, to keep energy requirements of video applications within the energy budget, several

compute intensive functions such as discrete cosine transform (DCT), motion estimation are
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implemented in custom hardware in embedded chips. When two or more applications compete

for the hardware DCT resource, the availability of software version of DCT will enable better

sharing of the hardware DCT with graceful performance degradation for the applications which

do not get to use hardware DCT. Such tradeoffs can be generalized by allowing computation to

execute on more than one style of compute resource and this paradigm of computing is referred

to as Polymorphism in this thesis.

The importance of energy efficiency in a portable personal device struggling to serve the

user interaction needs for a full day on a single battery charge cannot be overstated. Energy,

however, cannot be the sole focus of polymorphic embedded system. The application perfor-

mance and response time do play a significant role in user satisfaction as evidenced by limits on

response time of application threads in existing mobile operating systems. In order to balance

the energy-time needs for multiple applications, a mobile platform needs more flexible energy-

time design spaces for the applications. This work argues that polymorphic systems offer such

design space flexibility in a relatively straightforward manner.

3.1 Polymorphism

Polymorphic computing paradigm emerges as a direct consequence of heterogeneous com-

puting architecture with programmable cores. In such computing platform, an unit of computa-

tion, UoC (such as process, thread, function) need not be statically bound to either a hardware

or software implementation. For example, consider an application A1 designed with 5 threads

(T1, T2, . . . , T5 ) and application A2 with 4 functions (F1, F2, . . . , F4). In this example, the unit

of computation for application A1 is threads and for A2 it is functions. In this case, we argue

that thread T1 of A1 and function F1 of A2 have no reason to be statically implemented as

software or hardware. This is the traditional desktop paradigm for software applications that

is being currently used for embedded systems. The crux of our paradigm is such bindings can

be made dynamically. We believe that dynamic binding of unit of computation to a core of

NoC platform will efficiently utilize resources and it takes application design to the next level

as compared to traditional desktop application design methodology.
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With heterogeneous multicore nodes, an interesting notion of polymorphic threads arises.

A thread Ti can be compiled or programmed for binary images applicable to multiple core types

- CPU, GPGPU, RC (reconfigurable core - FPGA). We call such a thread a polymorphic thread

with Ti,j representing jth morphism for a polymorphic thread. A polymorphic application, A,

can be realized as a thread flow graph, directed acyclic graph (DAG), of polymorphic threads

T0, T1, . . . , Tn. An edge (Ti, Tj) shows dependence with Ti as producer and Tj as consumer.

Each thread Ti may be programmed with li + 1 morphisms Ti,0, Ti,1, . . . , Ti,li . Each thread

morphism Ti,j has radically different energy-time E ∗ T profile E TTi,j .

Consider the Android framework as an example to illustrate the application of polymorphic

threads. In Android framework [And], an application is designed as a collection of activities.

Each activity is a slice of model-view-controller (MVC). An activity can be instantiated by

other apps and system components. We can view an Android app as an activity flow graph

along the lines of the thread flow graph, even though each activity may not have its own thread.

Activities are typically invoked through the Android messaging framework called intents. The

intent layer within the Android framework gets to intervene preceding each activity invocation

in much the same way as the OS scheduler does for a thread. Hence, even if each activity is not

encapsulated as a thread, the morphism selection could still be performed dynamically within

the intent layer of Android framework.

To support dynamic bindings and communication among the units of computation, the

NoC system has to be relocatable [KPT14]. Relocatability virtualizes the NoC platform in the

same way physical memory is virtualized in desktop applications. We have developed such an

NoC simulator to assess the performance and placement metrics of video and audio benchmark

applications. The design of polymorphic thread scheduler is explored for a NoC system and

evaluated in this thesis. The importance of a scheduling policies becomes apparent when we

think of the several morphisms for the unit of computations that can potentially exist in the

system.
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3.2 Polymorphic Framework

Polymorphism is defined in energy, time, user satisfaction metric space. A polymorphic

system has two components.

1. Polymorphic Architecture − This is often realized as heterogeneous cores in a multi-

core system-on-chip (SoC). A given program specified behavior is realizable along different

energy-time points with different architectural or micro-architectural style cores. For the

same program, energy-time characteristics on a 4-wide superscalar core are different than

on a GPGPU core or on a reconfigurable FPGA-style core. In a traditional single pro-

cessor system, such energy-time polymorphism can also be realized to a limited extent

through dynamic voltage frequency scaling (DVFS).

2. Polymorphic Applications − A polymorphic SoC does no good if the programmer does

not compile some of the threads of an application into multiple morphisms suitable for the

morphisms expressed by the architecture. A program or a thread that is compiled into

multiple morphisms is called polymorphic. A polymorphic thread need not necessarily be

driven by architectural polymorphism. The classical algorithmic polymorphism - quick

sort versus bubble sort can also create different morphisms along the energy-time design

space. The OS scheduler not only has to schedule a thread, it has to pick a morphism of

the thread to be scheduled in order to achieve certain energy-time characteristics for the

system.

3.3 Design space

Consider a program/thread designed for two morphisms, M1 = (E1, T1) and M2 = (E2, T2).

For instance, the morphism M1 could correspond to Discrete Fourier Transform (DFT) on a

CPU core and M2 could correspond to DFT on a reconfigurable core. In reality, each of these

morphisms represents an energy-time curve parametrized by some algorithmic parameter, and

not a single point in the energy-time space. For DFT of n samples, (E1, T1) is likely to be

(cE1 ∗ n2, cT1 ∗ n2) for architecture and algorithm dependent constants cE1 and cT1 . The point
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(E2, T2) maps into similar n2 curves with different constants. If there was algorithmic morphism

say Fast Fourier Transform, the (E, T ) point will map to curves representing n ∗ log(n) with

appropriate constants.

With polymorphic scheduling, even though a programmers efforts may be limited to only

two morphisms M1 and M2, the operating system polymorphic scheduler can achieve any design

point represented as a linear combination of M1 and M2 − α1 ∗M1 + (1 − α1) ∗M2, the line

connecting points M1 and M2 as illustrated in Figure 3.1.

Energy

T
im

e

M1 = (E1, T1)

M2 = (E2, T2)

M3 = (E3, T3)

M5 = (E5, T5)

M4 = (E4, T4)

Figure 3.1: Linear combinations of morphisms

The parameter α1 represents the relative scheduling frequency for morphism M1. This is

a significant amplification of the two point design space provided by the programmer through

polymorphic framework. Similarly, a three morphism point programmer energy-time design

space is amplified into a triangle (also shown in Figure 3.1). In general, an N point design

space is mapped into its convex hull. Such expanded energy-time design spaces give the mobile

systems more flexibility in meeting system wide energy, time, and user satisfaction goals.
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3.4 Energy-Time Design space for video decoder

Video decoding is computationally intensive. Kernels of algorithms in the decoding engine is

used in several multimedia applications. The decoding phases can be demarcated into distinct

sub-tasks with well defined interface. The sub-tasks have wide range of implementation choices

in software and hardware [VZT03]. Hence, video decoding application is an ideal candidate for

polymorphic implementation. The sub-tasks of video decoder pipeline are shown in Figure 5.8.

A hardware/software co-design of MPEG-2 decoder evaluated in [VZT03] is used to illustrate

the energy-time design space expansion of polymorphic paradigm. Table 3.1 and 3.2 lists the

morphisms for DCT and Q threads in the MPEG-2 decoder application.

Table 3.1: MPEG-2 Decoder IDCT Morphisms

Thread Morphism Energy(mJ) Time(ms)

DCT SW 32.34 15.61

HW1(1-dct) 0.156 0.0075

HW2(2-dct) 0.709 0.015

Table 3.2: MPEG-2 Decoder Quantization Morphisms

Thread Morphism Energy(mJ) Time(ms)

Q SW 10.17 13.45

HW 14.09 3.2

A software morphism (SW) of DCT (CPU resource) consumes 32.34 mJ of energy and

completes the task in 15.61 ms in Table 3.1. DCT can also be implemented in FPGA hardware

as one dimensional DCT (1-DCT, HW1 morphism) with energy consumption of 0.156 mJ and

delay of 0.0075 ms. Another morphism of DCT (2-DCT, HW2) in Table 3.1 consumes 0.709

mJ of energy and has a delay of 0.015 ms in FPGA hardware. Similary, the quantization (Q)

phase of the MPEG-2 decoder has two morphisms - one in software (SW) and the second one

in hardware (HW). The energy consumed and delay in each morphism is listed in Table 3.2.

The OS scheduler can choose morphisms for the Q thread depending on available resources.

The ET space for Q thread depends on the fraction of time each morphism is used during the

life time of the MPEG-2 decoder application. Figure 3.2 plots the energy consumed and delay
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of the decoder application for various fractions of SW and HW morphisms. The upper surface

plot is the energy space and the lower surface plot is the delay space.
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Figure 3.2: ET Space variation for Q thread morphisms

The energy space and delay space for DCT morphisms is plotted in Figure 3.3. The plots

show the variation in energy and delay at a specific fraction for each morphism. The graph is

a 3D graph sliced at a given fraction along each axes to show the variation of energy and delay

along the slice.
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Heterogeneous SoC and Polymorphic paradigm can potentially expand the ET space of

polymorphic applications as evidenced by the MPEG-2 decoder example. The next section

details architectural design of existing Heterogeneous SoC which can be modeled using the

polymorphic network on chip simulator developed in this work.

3.5 Heterogeneous SoC

Mobile chipsets are gravitating towards multicore SoC architectures and each successive

generation has more compute cores. For broader energy-time space support, these cores need

to be heterogeneous. We believe that such heterogeneity must include not only the traditional

Von-Neumann cores, but should also include non-traditional FPGA fabric based reconfigurable

cores (RCs), custom hardware (ASIC like units), and general purpose graphics processing unit

cores (GPUC). The reconfigurable cores and GPGPU cores are lighter-weight, smaller granu-

larity versions of the FPGA and GPGPU respectively. An interconnection network facilitates

communication between these cores.

Xilinx [Xil] has recently introduced Zynq (Figure 3.4) which contains elements of such an

architecture. It contains an ARM Cortex A-9 dual-core processor along with the traditional

FPGA cells such as LUTs, DSP cores and block RAMs. FPGA logic slices are versatile for

implementing wide range of hardware which can exploit bit parallel execution. The Zynq

SoC interfaces the programmable logic with the ARM subsystem through the AMBA bus.

Applications which can benefit from hardware/software co-design can benefit from Zynq SoC.

iVeia [iVe] has released a prototype tablet system based on Zynq chip. The polymorphic

simulation platform developed as a part of this thesis is an tool to simulate designs on iVeia

prototype for initial design exploration.

The Tegra 4 SoC [Nvi] from Nvidia is yet another heterogeneous architecture used widely

in Android based phones and tablets. Tegra 4 has four ARM Cortex A-15 CPUs and one

battery saver ARM Cortex core for general purpose computing. General graphics applications

such as 3D games can be accelerated by the 72 GPU cores. Further, custom hardware such as

video decoder/encoder and audio can be used by multimedia applications. The battery saver

core works to save energy during device idle times by running background applications such as
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sending/receiving e-mails. The Tegra 4 SoC is illustrated in Figure 3.5.

Glimpses of polymorphic paradigm can be observed in the architectural decisions in Zynq

and Tegra SoC. The idea is application threads can use more than one compute resource to

expand the energy-performance design space. Polymorphic NoC simulation model developed

in this work can be used for modeling and exploring heterogeneous SoC architectures discussed

in this section.
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CHAPTER 4. USER SATISFACTION MODEL

The focus of this chapter is to introduce user satisfaction as a primary metric for resource

allocation in a mobile operating system such as Android. Mobile OS uses touch and multimedia

inputs that mimic real world actions such as swiping, tapping, pinching, and speech to manip-

ulate on-screen objects. They are user centric as their sole focus is on user interaction through

a graphical user interface. Traditional average case performance (delay or throughput) driven

resource allocation will be restrictive for these mobile devices. A user satisfaction metric which

models the user-centricness of these devices will be better suited for resource allocation. We

develop a user centric scheduling layer incorporating energy-time user satisfaction trade-offs

within the polymorphic simulation framework. Polymorphic thread scheduling in our frame-

work is driven by optimizing user satisfaction. User satisfaction of application is subjective and

often varies among individuals. However, simple models of user satisfaction for restricted class

of applications such as multimedia can be evaluated using scheduling policy and compared with

traditional earliest deadline first, first come first serve policies. We experimentally show that

user satisfaction scheduling policy performs better when compared to traditional scheduling

policies on NOC style diverse resource architectures.

Humans seem to have saturating interactions with our environment. Up to a certain point,

increased quality of interaction - perhaps through increased allocation of resources, leads to

improvement in user satisfaction. However, at some point, our satisfaction saturates. Any

further enhancement of resources to enhance the user experience at this point leads to negligible

gains in real user satisfaction. The same holds for dis-satisfaction or user satisfaction at the

negative end. Once a user is dis-satisfied (saturated), making the resource allocation worse has

no real impact on the user satisfaction. A second property of user satisfaction is that in the
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unsaturated region, it grows non-linearly. We model user’s perceived satisfaction from resource

allocation with a function called user satisfaction.

4.1 Modeling User Satisfaction

Human perception is important since it is eventually the perceived satisfaction from the

application that matters. Due to the natural signal processing limits of HAVS, often there

is a lower knee on the performance below which no satisfaction is derived. This establishes

a lower bound on the performance metric, below which, there is zero or no user satisfaction.

There is an upper knee after which the marginal satisfaction of any additional performance

is minimal. This establishes an upper bound on the performance metric, above which, there

is minimal improvement in user satisfaction for more resource allocation. It is the middle

region between these two knees that is important with nonlinear progression in satisfaction

with increasing performance. Voice perception clamped within the perceptible frequency range

has this characteristic. User satisfaction that fits such profile is best captured with a sigmoid

function.

The sigmoid model for user satisfaction (UserSat) is mathematically expressed by Equa-

tion 4.1.

UserSat(t) =
1

1 + α e−βt
(4.1)

The parameters α and β are used to define the characteristics of the sigmoid curve in

Figure 4.1. Parameter β is referred to as the slope of the linear region and controls the sensitivity

of user satisfaction to the change in resource allocation. The saturation regions at the upper

and lower knee of the sigmoid are controlled by the parameter α. The plot in Figure 4.1 has

two sigmoid curves for different values of the parameters α and β to illustrate the effect on

the sigmoid shape. The variable t is the physical parameter of interest such as throughput

at the application layer, bandwidth of flits at the network layer etc. which influence the user

satisfaction. It is constrained by the resource allocation policies.
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Figure 4.1: Sigmoid Function for User Satisfaction Function

4.2 Application Layer User Satisfaction

The following examples illustrate modeling of user satisfaction using sigmoid function. The

sigmoid function is the classical S shaped curve expressed as u(t) = 1
1+e−t for α = 1 and β = 1.

The parameters of an application can be continuous or discrete. Frame rate in video playback

is a discrete parameter since digital video sampling is done discretely unlike the web page

loading delay of a browser application, which is a continuous parameter. Frame rate is one of

the parameters that affects user experience to a large extent in any form of visual multimedia

applications. Such applications can include movie players, streaming video, teleconferencing,

video chatting, gaming engines etc. The user will specify the satisfaction expected from an

application in the range of [0,1] for parameters of interest in the application and in this case

it is the frame rate of the video multimedia being viewed by the user. Frame rate range will

be specified by the application designer since each type of video application can operate in a

different range. Video player which plays movie files/DVD can have frame rate in the range of

15 frames per second(fps) to 30 fps in steps of 2 fps as supported by the hardware platform.

3D Gaming applications need 30 fps to 60 fps in steps of 5 fps and video chatting has frame

rate of 3 fps to 15 fps in steps of 1 fps. Let the frame rate of 3D gaming be expressed by
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Equation 4.1 like model. Then its user satisfaction can be modeled by the sigmoid function

u(S) = 1

1+e−
(S−30)

5

for video playback applications

This is system dependent and has to be specified by the designer. Sigmoid modeling is

ideal for video player since below 15 fps the user satisfaction is close to 0 and above 30 fps it is

close to 1 and in between there is close to linear increase in user experience. The application

interface consists of a GUI which the user can use to specify the satisfaction function by

drawing the sigmoid and the back end logic can interpolate the sigmoid function to derive

the user satisfaction values for each of the acceptable frame rates in the application. Though

the users sigmoid function looks continuous, interpolation will make the sigmoid function look

piece-wise continuous.

4.3 Polymorphic Thread Scheduling

Polymorphism introduces new challenges for scheduling threads in a mobile platform with

one or more multi-threaded applications. Applications vary in nature and resource require-

ments. Video decoder output is measured using frame rate and resolution while an audio

decoder output is measured in samples per second. Traditional goals such as performance are

optimized by scheduling threads as early as possible when resource constraints are satisfied.

Such scheduling policies ignore user’s perception of satisfaction from resources allocated to

application threads. A relative mapping of satisfaction of the user to various outputs of the

application in the range (0,1) is modeled by user satisfaction. Intuitively, the dynamic distri-

bution of resources to application at different outputs is guided by user and used as a priori

information to the scheduler. Further, user satisfaction is a common denominator for compar-

ing resource allocations to application outputs which cannot be otherwise balanced with the

same scale. Frame rate for video and samples per second for audio are like apples and oranges.

However, from a user perspective, the HAVS interacts with these applications and determines

the satisfaction level from the application outputs at any given time period.
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4.3.1 Thread Communication Graph

An application is partitioned into one or more threads which may have dependencies, com-

munication bandwidth and resource requirements. A set A of n applications, A = {Ai|0 ≤

i < n}, is used for the following discussion. Ai is associated with a thread communication

graph (TCG) which determines the dependencies, communication degree and resource needs

of threads. The morphism choices for each thread is also specified by the designer in the

TCG. Each thread created will be associated with a structure, indexed by the thread identifier,

that contains information about morphism, resource needs (CPU, GPU etc.) , communica-

tion, execution state (Run, Wait, Ready) among other details. Application Ai consists of

pi threads Ti,j for 0 < j < pi. The morphism space for thread Ti,j , 0 ≤ j < pi, is de-

noted by Ti,j,r where 0 ≤ r < mi,j . Here, mi,j denotes the morphism space for the thread

Ti,j . Figure 4.2 shows the thread communication graph for an application with 7 threads,

T = {T0,1, T0,2, T0,3, T0,4, T0,5, T0,6, T0,7}. Any of these threads can be implemented as a soft-

ware thread or as a hardware thread.

The graph in Figure 4.2 clearly captures the computational dependencies and communica-

tion flow between threads in an application. Nodes in the graph represent the threads and the

edges between nodes at different levels denote the communication corresponding to each pair

of threads.

4.3.2 Optimization of objective function

The objective function developed in [KPT11] is used in the polymorphic scheduler in this

work to decide on morphism for threads. The overall scheduler goal is to maximize the perfor-

mance metric at the output (sink) threads in the TCG shown in Figure 4.2. This is because of

the fact that an applications actual user satisfaction can be perceived only at the sink node.

The computational relationship of the TCG also determines how many units of computational

output of a thread Ti,j are needed to generate one unit of computational output at the sink

thread. For instance, 1 frame at the output of Ti,j results in 1 frame at the output of the sink

thread. Hence, the maximization problem of the performance metric f(Ai) for the application
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Figure 4.2: Thread Communication Graph

Ai is mapped into the local optimization problem at the thread Ti,j as a scaling function si,j

times the original function f(Ai). The local optimization function is to maximize si,j ∗ f(Ai).

In the scenario of 1 frame at the output of Ti,j resulting in 1 frame at the output of the sink

thread, the scaling function si,j = 1. Often, this scaling relationship will be determined by

the algorithmic choices within the threads, and not by their morphisms. What morphism will

determine is the per unit time notion of the performance metric − not the scaling relationship.

The contribution of a thread toward overall performance throughput depends on the active cut

in the thread level flow graph − currently active threads.

Consider the TCG in Figure 4.2. Assume that the currently active threads are T0,2, T0,3, T0,4

corresponding to the cut C1. Let us consider how much performance throughput Thread T0,2

contributes to application A0. The scaling function is si,j = 1 for this edge. The scaling factors

over all the edges in the cut C1 add up to 2.5. Hence, T0,2 contributes
s0,2∑

j∈C1
s0,j
∗ f(T0,2) =

1
3 ∗ f(T0,2). On the other hand, at cut C2, T0,2’s contribution would be

f0,2∑
j∈C2

s0,j
∗ f(T0,2) =
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1
2.5 ∗f(T0,2). We call this contribution f0,2,r which is T0,2’s contribution to the objective function

for morphism r - this is captured in the output throughput f(T0,2). The optimization problem

is then stated as below:

Maximize S =
ti∑
j=0

ri,j∑
r=0

fi,j,r ∗Ready(Ti,j) ∗Mi,j,r (4.2)

Ready(Ti,j) is 1 if the thread Ti,j is in ready queue, and 0 otherwise. The scheduler has to

select at most one morphism for Ti,j by ensuring
∑ri,j
r=0Mi,j,r ≤ 1 so that at most one Mi,j,r

corresponding to the selected morphism is 1. Hence the constraints are,

∑
r

Mi,j,r ≤ 1, ∀i, j (4.3)∑
i,j,r

Mi,j,r Ri,j,r ≤ (Rcores +Rtiles) (4.4)

Mi,j,r = 1 if thread Ti,j will assume morphism r in the current scheduling cycle. The

second constraint ensures that the allocated software core and configurable core resources do

not exceed the available system resources. The scheduler has complete information to compute

fi,j,r. Each thread in the active queue from Application Ai (identified through a group ID)

contains its scaling function si,j in its thread descriptor header. Thread descriptor for Ti,j,r can

also publish its throughput f(Ti,j,r). The fi,j,r for the objective function can then be computed

by the scheduler as
si,j∑

Ti,l∈ReadyQueue
si,l
∗ f(Ti,j,r).

4.3.3 Multi-Application Scheduling

There are many ways of combining the resource contention for multiple applications A0, A1,

. . . , An−1. For the ease of explanation, we will illustrate this with two applications A0 and A1

with t0 and t1 threads respectively. Let us assume performance model functions S0(A0, CS , CC)

and S1(A1, CS , CC) to express performance metric for A0 and A1 as a function of software

and configurable core resources CS and CC . Let u0(S0) and u1(S1) be the user satisfaction

functions, as a function of their corresponding performance metrics. A simple, straightforward

way to combine them would be to take a weighted average of the user satisfaction functions

as f(S0, S1) = w0 ∗ u0(S0) + w1 ∗ u1(S1). This function has the disadvantage since it is not
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a normalized function, and hence during resource allocation the value of the currency keeps

changing! Moreover, such a weighted average loses some of the desirable characteristics of the

sigmoidal form.

An alternate way of resolving resource contention between these two applications is as

follows. In the end, what we really care about is the marginal utility of an available resource

such as a configurable core C to the user satisfaction, δu0
δCC

and δu1
δCC

. Whichever application gives

higher marginal utility in user satisfaction should be allocated the next available configurable

core. Towards that goal, we can calculate:

U0 =
δu0

δS0
∗ δS0

δCC
; U1 =

δu1

δS1
∗ δS1

δCC

The nice part of sigmoidal functions u0 and u1 is that δui
δSi

is just ui ∗ (1 − ui), an easy to

compute function. The second component measuring sensitivity of the performance metric to

the resources, δSi
δCC

can be easily approximated by considering each polymorphic thread in the

Ready Queue belonging to Application Ai and averaging the throughput difference between its

software and hardware morphisms: δSi
δCC
≈
∑
Ti,j∈ReadyQueue(f(Ti,j,c)− f(Ti,j,s)) where f(Ti,j,c)

is the performance metric of hardware (configurable) morphism for thread Ti,j and f(Ti,j,s) is

the performance metric of software morphism for thread Ti,j .

4.4 Network Layer User Satisfaction

In mobile devices, multiple applications contend for limited resources in the underlying

embedded system framework. Application resource requirements in mobile systems vary by

computation needs, energy consumption and user interaction frequency. Quality of service

(QoS) is the predominant metric of choice to manage resources among contending applications.

Resource allocation policies to support static QoS for applications do not react to the changing

demands of the user in contemporary network on chip (NoC) based embedded architectures.

User satisfaction with the user interactions and user interface (UI) design ought to be the

primary design driver. The application and operating system level user satisfaction research

assumes that the throughput of inter-thread edges is limited only by the computational con-
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straints of the nodes. With NoC, however, NoC resource allocation policies play an important

role in determining the inter-thread communication flow’s throughput and the resulting appli-

cation level user satisfaction. We filter down the user satisfaction from an application layer

attribute to a router level attribute to improve the resource and energy utilization for routing

in order to leverage the user satisfaction at the application and system level.

We extend the application layer resource allocation based on user satisfaction model to the

router resources in the NoC layer. We integrate NoC connection resources into application level

user satisfaction by modeling a throttling factor, 0 < m ≤ 1, that limits the throughput of edges

in the thread flow graph. The effect of NoC resource allocation (links, VCs, and other router

resources) is to increase or decrease m for the corresponding edge of the thread communication

graph resulting in optimization of the user satisfaction at network layer. In this work, VC

allocation is implemented as a software layer at each router. An inbound header packet, at a

router, requesting VC contains information about the throttling effect of previous routers in

its path and the desired user satisfaction of the communication flow represented by the header

packet. The VC allocator will increase or decrease m at the current router by accepting or

rejecting the header packet.

In the case of router, communication flows from different threads of the application layer

mapped to NoC nodes compete for virtual channels, buffers, switches and output ports. When

there are two or more communication flows competing for network router resources, the user

satisfaction model can guide the router control logic to allocate virtual channels for more

than one flow. Resources can be allocated to multiple flows to maximize the user satisfaction

as compared to traditional solutions that monotonically increase resources to a single flow

without regard for its perceived effect on the user. Our methodology uses the sigmoid model

in Figure 4.3 to develop VC allocation heuristic for QoS supported NoC.

Increasing router resources (for example, sharing VC with multiple flows) may improve the

bandwidth from 0.6 flits/cycle to 0.7 flits/cycle and this effect proportionately improves the

user satisfaction from 0.8 to 0.92 in the linear (Red lines) region of the sigmoid. However,

allocating larger resources (for example, multiple VC to a single flow) may result in a larger

bandwidth change in the saturation region (Blue lines) from 0.7 flits/cycle to 0.8 flits/cycle.
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Figure 4.3: Sigmoid Function for NoC Router

However, this only gives a meager improvement in users satisfaction from 0.92 to 0.97. Modeling

(or dynamically evaluating) the effect of resource allocation at NoC level on the performance

parameter (like flow bandwidth) used in user satisfaction function is an interesting research

problem addressed in this work. This strategy can be used for reallocation of router resources

to flows that may be starved when competing flows are close to the saturation region of resource

allocation. For example, consider two competing communication flows, F1 and F2, at a router

which are requesting virtual channel allocation. The router calculates the user satisfaction

(US) for flow F1 from Figure 4.3 to be US(F1) = 0.75. Allocating more VCs or buffers to

F1 will diminish the rate of increase (saturation region) of user satisfaction to US(F1) = 0.79.

However, for flow F2, the initial satisfaction is US(F2) = 0.5. Allocating extra VCs will result

in US(F2) = 0.6. The obvious decision is to allocate the router resources to F2. Hence, the

overall user satisfaction over all flows is maximized when user satisfaction gain per unit VC or

buffer is maximized over all competing flows.
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CHAPTER 5. POLYMORPHIC NETWORK ON CHIP

ARCHITECTURE

Polymorphic network on chip (PolyNoC) [PZT13] is the simulation framework developed as

a part of this research work for cycle accurate execution of polymorphic applications. In this

chapter, a detailed description of the architecture and programming of PolyNoC is presented.

The internal organization of PolyNoC is shown in Figure 5.1. The simulation environment is

composed of five layers of abstraction. The application layer loads and executes user applica-

tions from memory. The application layer processes the data flow graph to generate threads

for the scheduler to decide on the resource binding. The polymorphic thread scheduler layer

advances the simulation by scheduling threads at each simulated clock cycle. Threads are

queued up in C++ models of run and wait queues. Data structures keep track of free NOC

resources, mapping of threads to resources, morphism of current threads. Threads can be pre-

empted when there is a I/O event , communication event or timer interrupt. The scheduling

and mapping layer evaluates the proposed sigmoid function model to calculate the marginal

user satisfaction of individual threads that are being scheduled in the current cycle. Communi-

cation among threads generates data packets. Data stored in the buffers of FPGA morphism or

the CPU software thread buffer is converted into packets for NOC transmission by the packet

management layer. Packet buffers are allocated for headers and initialized with thread identi-

fier information, origin clock cycle etc. Packets are then injected into the NOC IP block source

buffers for arbitration and transmission.

The PolyNoC simulator [PZT13] is parameterized to model a M row X N column mesh

communication network shown in Figure 1.1. Each grid point in the mesh network is the

location of a resource such as CPU, programmable FPGA cells, input-output(IO) controllers

or other computing cores.
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IP block is the simulation primitive used to model a resource. Each resource is interfaced

with the communication bus through a router.

Polymorphic thread layer

NOC

Layer

Thread1

Scheduling and 

Mapping Layer

Thread2
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Run 

queue

Wait 

queue

Thread4

Application

Layer
Mpeg-2

Mp3

Thread5

Thread7

Thread6

Packet management

Layer

Packet

 injection

Packet generation

Packet buffers

Figure 5.1: PolyNoC Simulation Framework

Each link between neighboring IP block is bi-directional in the North, South, East and

West directions. First in first out(FIFO) buffers on each bi-directional link hold data packets

in that specific direction. The size of a FIFO buffer is configurable in the simulator during

initialization. A high level model of our router is shown in Figure 5.2.

Each bi-directional link has input and output FIFO buffers to store and forward packets to

their final destinations. Source and sink FIFO buffers interface the IP block with the router and
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Figure 5.2: Router abstraction in the simulator

thus connect the resource with the NOC mesh. Header of data and control packets arriving at

the input FIFO buffers is decoded by the router to decide allocation of virtual channels (VC)

at the input FIFO buffer. VCs arbitrate for a slot in the output FIFO buffer of the requested

link direction in round robin manner. Packets which have arrived at the destination router are

placed in the sink buffer for further processing by the IP block. Similarly, packets originate

from IP block intending to communicate with another IP block and begin their journey in the

source FIFO buffer. Worm hole switching is employed to reduce buffering needs at each router.

The number of flits per packet and the number of VCs in the router is also configurable at

initialization of the simulator.

Threads are minimum granularity computation units in this framework. Messages are

passed between communicating threads to implement the data flow graph of an application. The

binding of a computation unit to a set of computing resource in the NOC mesh is determined

by the scheduler dynamically subject to resource availability and supported thread morphisms.
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Packets from sender thread are stamped with a uniquely generated thread identifier. This

is useful for updating operating system data structures when the packet is received at the

destination. For example, time stamp could be used to wake up a waiting thread upon the

arrival of data.

5.1 PolyNoC Simulator Layers

5.1.1 NoC Layer

NoC layer class defines various parameters of router, link and policies to manage routing,

arbitration. Table 5.2 lists the members of network layer and their definitions. NoC layer

interface functions defined in nw.cpp of the PolyNoC simulator are used to send/receive packets,

check status of virtual channels, arbitrate for crossbar etc.

5.1.2 Packet Management Layer

Packet parameters such as header size, payload size, data width can be varied to estimate

the dependence of performance and power consumption. Table 5.1 lists the members of packet

class and their definitions. Interface functions defined in the PolyNoC simulator file packet.cpp

are used by higher layers to insert, queue and retrieve packets from the NoC layer of Figure 5.1.

Table 5.1: Packet Class

Member Definition

dest x, dest y Destination coords of packet

origin origination NoC node

src tid source thread identifier

dst tid destination thread identifier

data packet buffer

data size packet payload size

origin cycle packet creation cycle

insert cycle insert packet at later time

reached cycle packet reached destination cycle

reached dest flag indicating packet is in transit

pkt delay number of cycles from source to destination

packet type header = 0, tail = 1, data = 2

stream id communication flow identifier
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Table 5.2: Network Class

Member Definition

nbrs neighbours of NoC node

x,y coords. of NoC node

send flag NoC node ready to transmit

dirs NoC node bi-directional links

o buf NoC node output buffers

l buffer Physical channel buffer

vcs Virtual channels

thread thread executing in NoC node

5.1.3 Scheduling & Mapping Layer

Scheduling layer manages the queues which hold application threads. Run queues keep

track of polymorphic threads currently ready to run when NoC resources become available.

Threads which are waiting for I/O or blocked due to data/control flow precedence are held in

the wait queue. Table 5.3 lists the members of scheduling & mapping class and their definitions.

Interface functions defined in the PolyNoC simulator file scheduler.cpp are used by higher layers

to request for NoC compute resources, check status of running threads, mapping of threads to

NoC resources etc.

Table 5.3: Scheduler Class

Member Definition

tile NoC node type

run state NoC node is busy

tid thread identifier on NoC node

run list threads ready to run

wait list threads in wait list

running threads executing currently

threads all all threads in the system

5.1.4 Polymorphic Scheduling Complexity

The scheduler maintains data structure per thread to determine feasible threads which

can be scheduled during each scheduling epoch subject to resource constraints. The master

data structure, polymorphic thread table, maintains the scaling factor corresponding to different
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cuts a thread may belong to. A snapshot of the data structure is shown in Figure 5.3. The

polymorphic thread table is indexed using the thread identifier which is unique for each thread

created or forked. The scaling factor for each thread depends on the cut to which the thread

belongs to during the life time of the application. There are two cuts, C1 and C2, to which

thread, T0,2, can belong during application life time. Each cut is associated with a scaling factor

which is also found in the polymorphic thread table. The morphism table contains information

about the thread morphism choices, resource requirements per morphism and the associated

user satisfaction. A pointer from the polymorphic thread table indexes into the morphism table

to determine the user satisfaction for current resource availability.
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Figure 5.3: Scheduler Thread Data Structures

The two compute cores considered in this thesis are CPU and FPGA. The morphism table

shows different user satisfaction levels for various units of CPU and FPGA allocated to thread

T0,2. Hence, the polymorphic thread table and morphism table contain all the information in

the scheduling phase to compute overall user satisfaction for applications in Equation 4.2.

The user satisfaction model in Section 4.1 is continuous for the variable t which models

parameter such as application throughput, router flit rate etc. In reality, compute resources

are discrete and user satisfaction is not continuous as resources are varied. This fact enables



www.manaraa.com

42

the use of tables to store the pre-determined user satisfaction for morphisms instead of com-

puting values for sigmoid function at various parameter settings. The heuristics developed in

[KPT11] evaluates indexing strategies into the morphism table for initial allocation of resources

to determine feasible threads for scheduling. The morphism is changed only in steps to min-

imize scheduling overhead. The thread’s morphism will converge to the morphism which will

maximize the overall user satisfaction using the strategy of marginally increasing or decreasing

the index into the morphism table.

The polymorphic scheduler chooses threads which maximizes the user satisfaction during

each scheduling cycle. The set of threads which provide most marginal increase in user satisfac-

tion for incremental resource allocated will add to the overall user satisfaction. The allowable

morphism change in morphism table is only to the next higher morphism if the heuristic is

to initialize all threads to the lowest morphism when forked or created. Hence, ready threads

can be inserted into a red-black tree similar to that of Linux CFS [CFS] using marginal in-

crease in user satisfaction as the key. The ordered polymorphic threads based on increasing

marginal user satisfaction can be chosen in O(log N) time by visiting k left most nodes. The k

polymorphic threads then maximize user satisfaction using the allocated compute cores in that

scheduling cycle. This makes polymorphic scheduler comparable to Linux CFS for the time to

choose ready to run polymorphic threads from the run queue.

5.1.5 Polymorphic thread Layer

Polymorphic thread layer manages the thread flow graph of the application. Threads are

created and destroyed as specified in the thread flow graph. Data structures keep account of

parent, child, exit status of child etc. Threads can be forked and joined in high level C++

code. This layer assign thread identifier to newly created threads. Table 5.4 lists the members

of scheduling & mapping class and their definitions. Interface functions defined in the PolyNoC

simulator file appthread.cpp are used by higher layers to fork/join threads, get thread identifier

of child/parent thread, status of execution of child/parent thread etc.
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Table 5.4: Polymorphic thread Class

Member Definition

parent thread identifier of parent

child thread identifier of recent child

child all thread identifiers of all children

resource thread NoC node type

resume thread waiting for NoC resource

wake up control/data dependency is satisfied

exec join join with parent thread

wait for receive waiting for data dependency

5.1.6 Application Layer

Application layer interfaces with the external world by reading application binary and

loading into memory. Parameters for applications are read from command line or an input file.

The command line or input file is parsed for initializing simulator components. Output can

be written to file or displayed interactively to see the progress of packets in the network and

threads completion statistics is dumped.

5.2 PolyNoC simulator API

The simulator is completely written in C++ to facilitate overriding of available API func-

tions by the user code. Major functional blocks of the NOC style interconnect architecture are

abstracted using class definitions. A class is defined for each of IP block, Router, Buffer, Links,

Scheduler, Packet and Application thread. Linux style thread API and OS variable names are

mimicked and implemented to provide minimal overhead for porting existing multi-threaded

applications to the polymorphic simulator.

The application thread class, app thread, is the workhorse for writing user code. A user

application thread is created by inheritance of the app thread base class. The derived class needs

to override the virtual function operator()() to implement the desired thread functionality. In

Figure 5.4, operator()() is overridden by the derived class, my thread1, to print the thread

identifier. The built in API function , get tid(), can be used to get the thread identifier of

the currently executing thread. Each thread is assigned a unique identifier upon creation.
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class my_thread1 : public app_thread  
{
private:  // local variables of threads

int count;

public :
my_thread1();

virtual void operator()() ;   //thread implementation
};

void my_thread1::operator()()
{
cout << "this is my_thread1"<<endl;
cout << " my_thread1 id is "<< get_tid() << endl;
}

Figure 5.4: Creation of new polymorphic thread

Figure 5.5 illustrates the private variables of the base class definition for application thread in

the polymorphic simulator.

A host of state information is maintained in the app thread class. get and set functions are

available to access the state variables. For example, get mapped() returns true if the invoking

thread is mapped to an IP block. set mapped() is used by the polymorphic scheduler to mark

the thread as mapped if IP block can be allocated to it. However, some set functions may be

used by the simulation environment and hence, are not accessible by the user code. tile variable

holds the IP block address in the NOC mesh to which the thread is mapped. run state is the

current executing state of the thread - 1) running, 2) ready to run, 3) wait for resources. The

variables resume thread, wake up, exec join, wait for receive are modified by the scheduler layer

of the simulation environment to manage multiple threads running in the system. Each thread

may or may not be polymorphic depending on the user application. The variable morphism

identifies the current morphism assigned to the thread by the scheduler.

The next example in Figure 5.6 illustrates the fork and join constructs of the polymorphic

simulator. An application thread object has to be passed as the argument to the fork function.
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class app_thread
{
private :
int mapped ;
int tile;
int run_state;
int tid;  
int fid; //father id of this thread

int done;
int die;

list <app_thread *> child; //childs of this thread which are active
list <app_thread *> child_all; //all childs of this thread

app_thread *parent; //parent of this thread

list <nw_int *> resource_history; //all nodes where the thread ran, prempted etc

nw_int *resource; //thread is running on this node
int node_num; //node number where current thread is running 

int resume_thread;
int wake_up;
int exec_join;
int wait_for_receive;

Figure 5.5: Application thread base class

Thread 2, my thread2 class, forks the child Thread 1, my thread1 class, and waits for the child to

complete at the join statement. The fork function takes the object child as an argument. Upon

the execution of the fork statement, the simulation environment assigns a thread identifier to

the child thread and adds the thread to the run queue if resources are available. The child

thread can get the parent thread identifier using the get fid() call. Communication between

threads is supported by using send and receive primitives. The thread identifier of the receiver

thread is passed as argument to the send function. Data to be shared with the receiver thread

is stored in a buffer and passed as the second argument. send primitive is implemented in

two flavors - blocking and non-blocking. Blocking send suspends the sender thread until the

receiver thread finishes processing and the thread is placed in the wait queue. Non blocking

send continues execution past the send statement without waiting for the receiver to finish.

The receive function is blocking only. The data in the buffer is enclosed in one or more packets

with header and footer information for routing in the NOC mesh.
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void my_thread1::operator()()
{

cout << "this is my_thread1"<<endl;
cout << " my_thread1 id is "<< get_tid() << endl;

cout << " my_thread1 parent id is "<< get_fid()  
<< endl;

}

void my_thread2::operator()()
{

my_thread1 child;

cout << "this is my_thread2"<<endl;
cout << " my_thread2 id is "<< get_tid() << endl;

fork(&child);

join();

}

Figure 5.6: Fork and join example

Scheduler class, scheduler, manages various thread queues, mapping of threads to NOC

resources and choosing morphisms of threads using the sigmoid model for user satisfaction.

This class maintains a list of all active threads in the system. A glimpse of different APIs used

by the scheduler can be seen in the code excerpt of the simulator loop in Figure 5.7.

The simulation environment is initialized by invoking the init() function of the object,

polysched instance of the scheduler class. This function creates all the queue objects, thread

resource mapping tables and morphism state objects. The user can also provide applications

to be invoked before the start of the simulation run. This is done using the exec() call and

passing the thread object. In this example, app1 and app2 are two applications to be started

before the simulation run. The call to schedule threads invokes the scheduler to analyze various

queues, perform resource allocations, decide morphism changes among other functions. Several

other events such as communication primitives (send and receive), waiting for I/O can invoke

scheduler before the time quantum of a thread expires.

Packet repository class handles the creation, manipulation and deletion of packets. Packets

created are registered with the packet repository manager, packet repos instance in the example,
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polysched.init(); // init resources and other stuff which 
// cannot be done by the constructor

polysched.exec(&app1, &app2); //start initial set of applications

//grand simulation  loop
while(polysched.end_simulation() || packet_repos.end_simulation())

{
cout << "Cycle " << cycle << endl;

polysched.schedule_threads(cycle);

for(int i = 0 ; i < noc_sz * noc_sz ; i ++)
{

thr = (*nw_mesh[i]).get_thread();

if(thr != NULL)
(*nw_mesh[i]).run_thread();

(*nw_mesh[i]).print_buffers();
(*nw_mesh[i]).routing();
(*nw_mesh[i]).print_buffers();

}

cycle++;
}

Figure 5.7: Scheduler API example

for tracking purposes and memory management. Information about source IP block , destina-

tion IP block , origination cycle, path of the packet in the NOC etc. can be accessed using built

in API. Finally, the simulation is terminated by call to end simulation in both the scheduler and

packet repository. Calling end simulation ensures that all threads have completed execution

and all packet have reached their destinations.

5.3 Polymorphic Applications

MPEG-2 video standard was developed to address bandwidth reduction for transmission of

television quality digital video. It is a suite of audio and video codec based on lossy compression

techniques. Coding and decoding algorithms of the video standard operate on 64 pixels of image

data organized as a 8 X 8 matrix. The algorithms involved in the decoding of a video file are

shown in Figure 5.8.
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Figure 5.8: MPEG-2 Video decoding pipeline

The input bit stream from a video file is parsed for the occurrence of a unique start code

indicating the start of a valid mpeg-2 stream. A FIFO buffer serves as a bit reservoir for

the input bit stream. Bits are sourced by the different steps in Figure 5.8 from the reservoir.

Global parameters of the video file are first extracted. Decoding proceeds by detecting group of

pictures(GOP) start code and the GOP header is analyzed to retrieve time stamp information

and other flags. MPEG-2 stream may consist of multiple GOP frames. GOP frames can

be decoupled into multiple individual units for decoding. All the video samples used in our

simulation have multiple GOP frames. Picture, Slice and Macro block headers are the next

three levels of hierarchy shown in Figure 5.9.

The variable length of the codes used to decode the motion vectors and AC/DC co-efficients

imposes serial processing of subsequent codes. Access to code tables for decoding multiple

GOP frames creates contention. Picture type is determined after decoding the picture header.
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Figure 5.9: MPEG-2 Header hierarchy

MPEG-2 standard supports three picture types - I type, P type and B type. I type picture

does not have any temporal redundancy and hence requires more encoding bits. It can also

be decoded independently. There are more accesses to table lookup when compared to com-

putations in I type picture. P type pictures are predicted based on an earlier I type or P

type. More redundancy results in lower bits of encoding and lower table look up with higher

computation needs. B type pictures are predicted based on previous and subsequent I and/or

P type pictures. For example, a sample stream of pictures in MPEG-2 may have the sequence I,

P, P, B, P, I, P, P, P. I type pictures in the picture stream also can be decoupled for individual

decoding. Decoupling the stream results in two individual clusters of picture streams - 1) I,

P, P , B, P and 2) I, P, P, P. There is interdependency between P, B pictures on I and/or

P pictures for decoding. Pictures are further divided into slices and slices are subdivided into

macro blocks. Each slice can be decoded in parallel. Observation in this section are used for

the multi-threaded implementation of MPEG-2 decoder. Table 5.5 lists the primary classes

and some interface functions used in our C++ MPEG-2 implementation. The classes in Ta-

ble 5.5 encapsulate commonly used MPEG-2 computational functions. The user can change

the implementation to change the morphism characteristics. We use two morphisms for com-

putational threads which have well known CPU and FPGA implementations. Kernels such

as inverse discrete cosine transform (IDCT), table look up, motion vector compensation have

several FPGA implementations in research literature.
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Table 5.5: MPEG-2 Polymorphic implementation

Class Interface functions Morphism

mpeg2 init mpeg2 init params initialize buffers CPU
mpeg2 params get vertical size video vertical size CPU

get horizontal size video horizontal size
startcode detect start code
getseqhdr get sequence header
getgophdr get GOP header

get pict type picture type (I,P,B)
mpeg2 main mpeg2 run invoke MPEG-2 application

mpeg2 gop decouple GOP frames CPU
decode picture decode pict init Frame buffer initialization CPU, FPGA

sync buffers Frame buffer updating CPU, FPGA
motion vectors motion vector compensation CPU, FPGA

get MBs Macro block decode CPU, FPGA
idct idct compute compute IDCT of 8x8 block CPU, FPGA

mpeg buf mpg fill buffer Fill bit reservoir CPU, FPGA
mpg peek buffer Look ahead into reservoir CPU, FPGA

mpg readbits buffer Read from reservoir CPU, FPGA

Our second application is a C++ implementation of the MP3 audio decoding standard. MP3

coded bits are also divided into multiple physical frames of data. Physical frame size is fixed

and each physical frame is preceded by a sync code and side channel information. Physical

frame boundaries can be detected by scanning for the sync code in the bit stream. However,

MP3 frames are also viewed as logical frames for achieving variable bit rate. Physical frames

and logical frames may not always coincide. A logical frame may span more than one preced-

ing physical frame. This means that data of the current physical frame may be present in one

or more previous physical frames. Hence, even though individual physical frame’s side chan-

nel information can be decoded, there may be dependency between successive physical frame

data. We compute the starting index of logical frame to initialize buffers. All threads in MP3

decoder use CPU morphism except the modified inverse discrete cosine transform (IMDCT)

computation. IMDCT uses CPU and FPGA morphisms.
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5.4 Experiments & Results

The experiments in this section are aimed at demonstrating two components of PolyNoC -

1) application simulation in PolyNoC framework and 2) compare the scheduling performance

of sigmoid based user satisfaction model with traditional scheduling methods. Two multimedia

applications, namely MPEG-2 decoder and MP3 decoder are ported to PolyNoC framework as

case studies for polymorphic thread model. The MPEG-2 decoder C source code was developed

by MPEG Software Simulation Group. We have ported the whole decoder to C++ from scratch

with polymorphic simulator as the final target. MP3 decoder is also implemented in C++ from

an open source C code.

The source thread of MPEG-2 application in Figure 5.10 reads video files from the disk

and parses for the start code. It creates bit reservoirs for GOP(group of pictures). The source

thread decodes the global parameters such as height, width, chroma format, output format and

other details of the video file. The values are stored in a global class which is declared as a

friend class for access of these data from other classes in the simulation. Temporary buffers are

allocated to store GOP coded bits of video file.
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GOP Threads
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Figure 5.10: MPEG-2 Polymorphic threads abstraction
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Each GOP frame is assigned to a single thread for decoding. The GOP headers are decoded

by the GOP thread and other bit level processing is done to retrieve the coded bits for individual

picture frames. The gop thread now forks picture threads for each picture type present in the

picture stream as shown in Figure 5.10.

Decoding of coded coefficients and motion compensation differences involves table look up

of Huffman codes. FPGA LUT and On Chip RAM are efficient for table lookup and this can

be done in 1 or 2 cycles. To avoid contention from several GOP threads to a single On Chip

RAM for table lookup, the tables are copied to the morphism of each GOP thread. Research

literature has plethora of efficient lookup table implementations such as multi-cycle lookup to

reduce storage requirements. The implementation and cycle length can be configured in the

MPEG-2 GOP thread. Each GOP is spawned into a polymorphic thread which is scheduled

on the NOC resources based of user satisfaction and resource availability. The granularity of

polymorphic threads can be further modified to generate threads at the picture, slice or macro

block level.

The physical attributes of the four video files used in our simulation are listed in Table 5.6.

Table 5.6: Video file attributes

Video file Size Max. frame rate # of GOP Avg. Picture frames

tennis.mpg(M1) 352 x 240 30 fps 22 6
football.mpg(M2) 352 x 240 30 fps 3 12
garden.mpg(M3) 352 x 240 24 fps 22 6
salesm.mpg(M4) 352 x 240 24 fps 6 6

The applications discussed in this section are used for evaluating the performance of user

satisfaction based thread scheduling over traditional first come first serve (FCFS) and earliest

deadline first (EDF) scheduling algorithms. Applications can be launched at random times

in the simulation. However, in real life situations, a user may launch multiple applications

successively or web browsers can spawn several video decoding threads for multimedia contents

simultaneously. Three scenarios are used to generate application traffic as shown in Figure 5.11.
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Figure 5.11: Application traffic scenarios

In Scenario 1, each of the four video files in Table 5.6 are decoded successively after the

prior decoding is complete. This is the base case for comparing the user satisfaction based

scheduling efficiency. Only threads from a single video decoding application are present in

the simulation at any time in Scenario 1. All the resources of the NOC are available without

any contention. In this case, loss of user satisfaction is primarily due to network inefficiencies

in routing, arbitration and buffer allocation in the NOC. Multiple video file decoding are

overlapped in Scenario 2. Successive video decode is invoked approximately midway during the

decode of the prior video. This results in contention for NOC resources from threads of more

than one video decode application. In Scenario 3, an audio decode application (A1) is invoked

along with each video decode application. Audio application is invoked a total of four times. In

this scenario, resource contention occurs at the start of the simulation. The audio application

however is light weight when compared to video decode.

The simulation is run on a 4 X 4 NOC with 6 CPU and 10 FPGA resources. Each CPU

is modeled to execute two software threads. Threads ready to be scheduled, in the run queue,

are allocated to the NOC resources using one of the three policies - 1) a set of threads which

increase the marginal user satisfaction (US) are scheduled on free resources, 2) one or more

threads at the head of the run queue are scheduled (FCFS), 3) one or more threads with earliest

deadline in increasing order is chosen to be schedule in earliest deadline first (EDF). The three

scenarios of Figure 5.11 are executed in the simulation to generate polymorphic threads and

packet traffic in the NOC. User satisfaction is averaged over all executed threads and reported
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at time instants T1, T2, T3, T4. Figure 5.12 plots the average user satisfaction for scenario 1

for each of the three scheduling policies.
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Figure 5.12: Average user satisfaction for Scenario 1

The average user satisfaction is better as compared to FCFS and EDF when morphism is

chosen by the polymorphic scheduler to increase the marginal user satisfaction (US) as seen

in Figure 5.12. The best morphism is statically chosen for a thread when scheduling using

FCFS and EDF policies. EDF policy does perform better than FCFS since threads in the

run queue with fast approaching deadlines are chosen for resource allocation and these happen

to be I picture threads which have higher marginal user satisfaction. However, dynamic

morphism transitions are allowed in US scheduling policy which utilizes CPU morphism for I

threads if FPGA morphism change is not possible. Hence, EDF policy does not utilize free

resources for the most gain in user satisfaction. Figure 5.13 plots the results for average user

satisfaction resulting from overlapped execution of video decode applications. Contention for

FPGA morphism from threads of multiple decode applications forces the polymorphic scheduler

to choose CPU morphism for many more threads as compared to Scenario 1. Note the lower user

satisfaction when two video decode applications are executing in the simulation as compared

to Scenario 1. However, EDF and FCFS scheduling policies suffer a much larger drop in

user satisfaction. This is because of the fixed morphisms of threads. Statically fixed FPGA

morphism for I threads results in these thread suffering much longer wait times in the wait
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queue for FPGA resource to free up. Also, note that this is specific to the 4 X 4 NOC with

fixed number of CPU and FPGA resources. It is possible to improve the user satisfaction either

by increasing the number of FPGA resources or the size of the NOC. Thus, our tool enables

exploration of such design points give a set of multimedia applications.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T1 T2 T3 T4 T5

A
ve

ra
ge
   
 U

se
r 
   
  S

at
is

fa
ct

io
n
 

Time  instants

Scenario 2

US

FCFS

EDF

Figure 5.13: Average user satisfaction for Scenario 2

The third scenario generates threads by executing three simultaneous applications in our

simulator. The audio decode application consumes more CPU resources than FPGA resources

since we designed only the IMDCT thread to be polymorphic. The lower user satisfaction

is due to higher contention for CPU resources from the audio decode threads in the case of

polymorphic scheduling policy as seen in Figure 5.14.

Video decode threads have to compete for CPU resources with audio threads for morphism

transition when FPGA resources are busy. FCFS and EDF policies suffer for the same reasons

as in Scenario 2. The average user satisfaction is lower when the number of applications in-

creases as seen from the above three scenarios. However, polymorphic scheduling optimizes user

satisfaction more effectively in comparison to EDF and FCFS policies in all three scenarios.

Polymorphism enables the scheduler to choose the next best morphism using late binding of

computation to resources when resource allocation for the best morphism is not feasible. This

section described the details of the architecture and implementation of a simulation tool for

exploring polymorphic thread design space in an NOC communication architecture. We have
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Figure 5.14: Average user satisfaction for Scenario 3

implemented polymorphic multimedia applications to compare the effectiveness of user satis-

faction scheduling policy against traditional FCFS and EDF policies. The results demonstrate

that polymorphism is an effective way to utilize the NOC resources during contention from

multiple threads. NOC routers are passive in the current simulator model.
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CHAPTER 6. USER SATISFACTION MODEL FOR NoC ROUTER

Modern mobile devices deploy rich and complex systems on chip (SoC) that include or are

likely to include NoC [DT01, BM06] for inter-core communication. For fine-grain threading,

NoC bound communication traffic represents the critical edges in application TCG. Hence, NoC

performance is also strongly coupled with user satisfaction at the communication layer. User

satisfaction can be asymmetric along multiple applications, and within an application it can be

saturating. However, at NoC layer, we tend to allocate resources to improve overall bandwidth

or latency until resources such as virtual channels (VC) are exhausted. To enable permeation of

the user satisfaction model into the NoC layer [PT13], the research in this chapter has addressed

the following two issues − (1) translate user satisfaction metric at application level into user

satisfaction metrics at NoC layer (2) develop routing heuristics to use the user satisfaction

metrics at NoC layer. The focus of this chapter is in exploring a holistic user satisfaction

optimization at the NoC layer. We make three contributions in this chapter. First, we propose

to use the user satisfaction model in Section 4.4 to measure and optimize the utilization of router

buffers using virtual channel abstraction. Second, we describe the modifications required for

virtual channel allocation to support the user satisfaction based scheme. Third, we develop

a simple energy model for thread communication in the NoC and apply user satisfaction to

optimize energy utilization for a critical set of applications.

Application layer uses the services of the NoC layer. The user satisfaction model provides a

unified QoS like metric for design optimization at the application layer and the network layer.

Most prior efforts reviewed in Section 2.2 related to virtual channel allocation have limited

the focus exclusively at the NoC layer ignoring the effects of such solutions on the higher level

abstraction layers such as the application layer. Our QoS like metric extends seamlessly to

the network layer from the application layer. As far as we know, our work is the first attempt
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to integrate user model into the NoC layer resource optimization and energy modeling for

communication flows.

6.1 User satisfaction metric for VC allocation - Motivation

Virtual channel allocation stage of the control logic allocates buffer space for incoming pack-

ets in the router. VC is allocated by the head of the line or header (HOL) packet that contains

control information about the communication flow. VC allocation is also typically the first stage

in the control logic and very critical in the completion of the communication circuit from source

to destination. Unavailability of VC results in blocking of the HOL packet [HOM07]. Similarly,

arbitration (ARB) for the switch to output port constitutes the second stage on the critical

path. Several works have also investigated techniques to increase bandwidth by manipulation

of VC allocation. VC is also important from another aspect - QoS (quality of service). Quality

of service is an important parameter to measure the overall performance of the SoC from the

end user point of view. Metrics such as response time for interactive applications, frame rate for

video applications serve as QoS metrics for embedded systems. Most work ignore modeling of

QoS from the end user view in the NoC abstraction. Routers effect is to throttle the maximum

available bandwidth for a single communication flow due to the presence of multiple competing

flows. In this chapter, we model the router bandwidth throttling and incorporate it into the

user satisfaction model of Figure 4.3 using the slope and throttle parameter (See Section 6.3)

of the curve.

To motivate the contribution of this work, we will provide a simple example shown in

Figure 6.1. Consider two applications - a video and a web browser application running on the

3X3 NoC. Each application has two communicating threads which are mapped to the nodes

of the NoC infrastructure. Figure 6.1 depicts the first two columns of the 3X3 NoC with the

routers being blown up in size to show the communication routes. The VLC thread is mapped

to Node 0 and the ME thread is mapped to Node 4 for the video application. Similarly, the

W1 thread is mapped to Node 6 and the W2 thread is mapped to Node 1.

The header, data and tail packets of both applications compete for buffers, virtual channels

and output port at each router until the destination node is reached. Packets (Red colored)



www.manaraa.com

59

ROUTER 0

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

VLC

ROUTER 3

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

ROUTER 6

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

W1

ROUTER 1

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

W2

ROUTER 4

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3

PORT 
5

ME

ROUTER 7

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

(a) HOL Blocking of Green packets from W1 W2 
flow at ROUTER 3 (PORT 2)

ROUTER 0

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

VLC

ROUTER 3

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

ROUTER 6

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

W1

ROUTER 1

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

W2

ROUTER 4

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3

PORT 
5

ME

ROUTER 7

VC
ARB

PORT

PORT 0

PORT 1

PORT 2

PORT 3
PORT 5

(b) Green packets share VC of Red packet and 
ARB slot 

Figure 6.1: Two applications communicating in NoC

originating from the VLC thread trace the Red colored path through the network to the ME

thread as seen in Figure 6.1(a). W1 thread of the web browser application sends packets (Green

packets) by the Green route to W2 thread.

In this example, the flow from VLC→ME (shown using Red colored router elements) and

W1→W2 (shown using Green colored router elements) compete for buffer resources at the in-

put ports of Router 2. Depending on the VC allocation policy and arbitration protocol, one of

the competing data flows will experience HOL blocking at Port 3 of Router 2 (Figure 6.1(a)).

It may be random for round robin policy. If QoS policy is implemented, video application

may have guaranteed QoS due to decoding constraints. In this case, HOL blocking will occur

for data communication flow for the web browser threads. However, once a minimum QoS is

achieved for the video application data flow, attempts can be made to reallocate the excess
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bandwidth to other blocked HOL packets in the router. This is the crux of our technique which

is to allocate VC and arbitrate for outport based on optimizing the bandwidth of multiple com-

munication flows simulataneously. The flow with maximum marginal gain in user satisfaction

receives the next VC or buffer. Once the bandwidth needs of a single flow are satisfied by its

user satisfaction moving to saturated region of Figure 4.3, it is not likely to receive additional

NoC resources. The excess bandwidth over the guaranteed QoS can now be reallocated to

other communication flows. The saturation region of the sigmoid models any resource allo-

cation above the guaranteed QoS. Figure 6.1(b) depicts the state of buffers in Router 4 after

reallocation of VC to communication flow W1→W2. A Green packet of flow W1→W2 gets to

share the VC allocated to the flow VLC→ME. In the user satisfaction model, physical parame-

ters such as bandwidth, throughput are mapped to users perceived satisfaction. We attempt to

use user satisfaction as the QoS metric to perform VC allocation as discussed in the work. Our

argument is that optimizing NoC physical constraints do not directly map into the optimization

of top level application abstraction. This is because decisions for mapping and allocation of

NoC nodes to application threads are made by the scheduler. But decisions at the router are

made locally. We believe user satisfaction as the QoS metric will equally apply for decision

making at the application layer and the network layer. Global optimization of user satisfaction

is done by the scheduler during allocation of NoC resources to the threads. But this model is

extended to router level decision making to have the local influence affect the user satisfaction.

We now address the following questions - How can the resources for extra bandwidth in the

saturation region for communication flow be reallocated to competing communication flows?

How does this translate into VC allocation policy at the router?

6.2 User satisfaction metric versus Quality of service in NoC

NoC based circuit design maps global design goals, of the whole system on chip, into local

design choices at local domains. Domains may be a single logic block, a group of logic blocks,

or more complex CPU, FPGA. NoC also raises the level of communication abstraction to

transaction level enabling local domains communicate by passing messages [DT01]. Figure 6.2

shows a 9 node NoC mesh communication system organized as a 3 X 3 grid.
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Figure 6.2: NoC mesh - Application mapping

Each node in Figure 6.2 is a local domain which can be independently designed in the

SoC. Communication between nodes is facilitated by routers which can buffer and exchange

messages. The major elements of NoC router are first in first out (FIFO) queue buffers, virtual

channels [Dal92], arbitration protocols and output port buffers. A magnified view of the router

on the right side of Figure 6.2 depicts the various internal elements. The router in this example

has two input virtual channels per input port which are shown in Figure 6.2. Output ports are

not shown for clarity. Each FIFO queue buffer has a depth of four. The simplified control logic

consists of three stages - virtual channel allocation (VC), arbitration for output ports (ARB)

and port allocation (PORT). Multiple routers lie on the critical path for SoCs using on chip
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Figure 6.3: User satisfaction and QoS policies for NoC

communication networks.

Design policies for various stages in the control logic and allocation policies for buffers have

been explored in several works reviewed in Section 2.2. Buffers are major energy hog in the on

chip communication infrastructure. Maximizing utilization of buffers per unit energy spent is

of utmost importance to achieve higher throughput of the SoC designs.

Static QoS policy for applications restricts virtual channel allocation flexibility and hence,

under-utilizes NoC buffers in two major ways. First, by statically allocating VCs and associ-

ated buffers at application level routers are deprived of the flexibility to reallocate free buffers

dynamically. Second, the static QoS policies do not reflect the user behavior in embedded

systems using NoC paradigm. As compared in Figure 6.3, static QoS allocation policies made

at the application layer are difficult to permeate to the NoC layer due to the lack of appropriate

model which can be used at both the layers. Existing QoS policy at application level do not

provide any control knobs for the NoC layer to improve performance. In fact, each inter-thread

communication edge is viewed as an atomic step at this layer. Figure 6.3 shows a possible

resource allocation among four applications, APP1, APP2, APP3, APP4, in the NoC. The

boundaries in Figure 6.3 indicate a proportion of the total resources allocated to each applica-

tion. The demarcation of NoC resources for static QoS policy in Figure 6.3 is rigid and cannot

be changed dynamically to adapt to runtime variations in application resource requirements.

In our methodology [PT13], the user interaction with the application decides the allocation of
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resources at the NoC level. The resource allocation boundaries of applications are flexible due

to better matching of resources to dynamic application needs. This is shown by the reclama-

tion of free resources in Figure 6.3. User satisfaction is modeled using the sigmoid function

(Figure 4.3) in our work. VC allocation decisions are made at routers for communication flows

which maximizes the user satisfaction. The sigmoid function is a non-linear saturating function

which models the human psycho visual expectation from applications at the application layer.

For example, it is known that increasing video playback frames per second (fps) allows for

improved viewing of smooth motion under certain conditions. Allocating resources to a video

player application to increase the playback frame rate from 24 fps to 35 fps may improve the

user satisfaction by a greater amount as opposed to the same resources being used to playback

from 50 fps to 55 fps. In the latter case, the human eye is less sensitive to observable smooth

motion effects as compared to former case where the playback fps increased from 24 fps to 35

fps. We model this effect using the sigmoid function which saturates when resource allocations

exceed a threshold indicated by the knee of the curve in Figure 4.3.

6.3 User satisfaction model for Router

The human psycho visual system responds differently to information received by various

senses such as vision and hearing. The end users satisfaction from an embedded system innately

depends on the human psycho visual system. Different QoS requirements have to be supported

by the NoC depending on application characteristics, implementation, computation needs and

importantly the human psycho visual system response to the applications. For example, a video

playing at lower frame rate would be more of an annoyance compared to a web page loading

slowly. Similarly, audio and text interface based applications have different user satisfaction.

Though these are subjective and vary between individual users, modeling them for NoC layer

resource optimization is the goal of this section.
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The sigmoid model for user satisfaction (UserSat) is mathematically expressed by Equa-

tion 6.1.

UserSat(t) =
1

1 + α e−βt
(6.1)

The parameters α and β are used to define the characteristics of the sigmoid curve in

Figure 4.3. Parameter β is referred to as the slope of the linear region and controls the sensitivity

of user satisfaction to the change in resource allocation. The saturation regions at the upper

and lower knee of the sigmoid are controlled by the parameter α. The variable t is the physical

parameter of interest such as throughput at the application layer, bandwidth of flits at the

network layer etc. which influence the user satisfaction. It is constrained by the resource

allocation policies.

To develop the objective function for user satisfaction at each router Ri, we develop the

constraints on the physical resources which have to be satisfied under all resource allocation

cases. Table 6.1 lists the definitions of all the symbols used in the following derivations.

Table 6.1: Notations for optimization of User satisfaction

Symbol Definition

Ni Node i in NoC mesh

Ri Router i of node i

Lij Unidirectional Link from router Ri to Rj
Ai(T,E) i th Application thread graph

T - Set of threads {T i1, T i2, . . . , T ik}
E - Set of edges between thread {eimn = 1 ⇐⇒ T imcommunicateswithT

i
n}

V Ci,pj Virtual channel set of Ri at port p, j = 1,2,...,MAX VC

sim cyclet Simulation clock cycle time t

fsim cycle
i,m,n Communication flow from T im to T in at time sim cyclet

Condition 6.2 constrains the total number of VCs allocated to all flows at each of the

MAX PORTS number of ports to be less than maximum number of VCs (MAX V C).

MAX PORTS∑
p=1

MAX V C∑
j=1

V Ci,pj ( f sim cyclet
r,m,n ) ≤ 4 ∗MAX V C (6.2)

V Ci,pj (f sim cyclet
r,m,n ) = 1 if jth VC at port p is allocated to flow fsim cyclet

i,m,n .
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Condition 6.3 is the second constraint on the arbitration for the output buffer at router Ri.

MAX PORTS∑
i=1

ARBsim cyclev
i ( fsim cyclet

r,m,n ) ≤MAX PORTS (6.3)

This condition expresses the fact that only one flow’s packet can reach the output buffer of

any port at a given simulation time v.

The bandwidth of flow, fsim cyclet
r,m,n , over time duration ∆t, at router Ri can be calculated

subject to Conditions 6.2, 6.3 as follows.

BW (fsim cyclet
r,m,n ) =

∆t∑
v=1

MAX PORTS∑
i=1

[
V Ci,pj (fsim cyclet

r,m,n ) ∗ ARBsim cyclev
i ( f sim cyclet

r,m,n )

∆t
] (6.4)

Note that Equation 6.4 applies for any policy chosen for VC allocation, arbitration and

routing. For example, the flow can exit through any of the router’s port due to adaptive

routing. Equation 6.4 adds up the bandwidth of the flow for all the ports. The throttling

factor (TRF ) of flow, fsim cyclet
r,m,n , due to other flows competing for resources at router Ri is

defined as,

TRF i(fsim cyclet
r,m,n ) =

BW (fsim cyclet
r,m,n )

BW of all flows at Ri
(6.5)

Substituting Equation 6.5 in Equation 6.1, we derive the effect of resource allocation at

router Ri on the user satisfaction of communication flow from thread, T rm, to thread, T rn , at

simulation time t.

UserSat(fsim cyclet
r,m,n ) =

1

1 + α e−β∗TRF
i(f

sim cyclet
r,m,n )

(6.6)

The communication edge between T rm and T rn is mapped to a subset of routers, P . Data

packets from T rm to T rn hop along the routers in P . The overall effect of resource allocation at

all the routers on the communication flow’s path in the network is expressed as follows.

UserSat(f sim cyclet
r,m,n ) =

1

1 + α e
−β∗

∏
p∈P TRF

p(f
sim cyclet
r,m,n )

(6.7)

We will use Equation 6.6 in evaluating virtual channel allocation for competing communi-

cation flows and also arbitration for output port once VC allocation is complete.
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6.4 User satisfaction modeling of NoC energy utilization

Energy utilization modeling at the NOC layer is also investigated in this work to quantify

the effectiveness of application layer user satisfaction policies on energy utilization of NoC re-

sources. We attempt to model user behavior at distinct energy profiles to influence the resource

allocation policies using the sigmoid model described in Section 4.4. Existing research efforts

[HM04b, HM05, MCM+05] have attempted to model the energy consumption by estimating

the number of hops between source and destination nodes in the NOC for each packet. Re-

search related to quality of service [HKKB13] for applications ignores energy due to the fact

that it is an indirect parameter in system design and often not specified in the expected design

characteristics of the application such as frame rate, throughput. Such models do not consider

the problem of resource allocation to various flows of communicating threads to optimize en-

ergy consumption predicated on the user behavior at any given instant. Further, there is a

disconnect between QoS based routing and its impact on energy consumption at NoC layer.

We address this issue in the following discussion.

The behavior of user is different on the time and energy axes [PT14] in the application

design space. However, the space of user behavior is infinite considering the vast number of

users who have different expectations from the same embedded system. Modeling user behavior

for different system energy profiles is akin to finding eigen vectors to efficiently express complex

functions as projections along eigen axes. Consequently, user satisfaction policies for energy

optimization can be projected from the application design space to the NoC abstraction. The

time axis refers to attributes such as latency & response time of the application. A text based

chat application is expected to respond quickly to user actions and increased response times will

result in diminished user satisfaction. Similarly, latency of decoding video frames is expected

to be within the supported frame rate to avoid choppiness in the video which may also result in

diminished user satisfaction. Such problems fit into the sigmoid model proposed in Section 4.4.

Hence, policies at the NoC affect the user satisfaction [PT14] in a direct manner during short

term resource allocations to improve application performance.
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In contrast, the effects of energy optimization policies are not apparent to the user until

the fixed energy source, Esource, decreases to a critical level, Ecritical. The critical level may

vary with the user. User behavior may change if current energy reserve, Ecurrent, falls below

Ecritical. The user may choose to ignore the critical nature of the situation by continuing

existing status quo in the embedded system. For example, the user may continue to run all

active applications, A, some of which are energy demanding such as watching a HD video

until system shutdown. However, in other cases, the user may choose to change the status

of the embedded system by implicitly trying to extend the energy source for longer duration.

For example, the user may choose to quit a set of energy consuming applications which are

in the Do Not Prefer list, ADNP ⊂ A, such as HD video movie decoder. The remaining set

of applications are in the Currently Preferred Applications list, ACPA ⊂ A, such as e-mail

client, web surfing, which use the remaining energy, Ecritical. The user satisfaction policy

changes for ACPA when compared to ADNP . Hence, satisfying the constraints of applications

in the set ACPA maximizes the user satisfaction in the region, Ecurrent ≤ Ecritical. In this

discussion, we have identified two distinct regions in the user satisfaction versus energy axis

to be the energy profiles for the NoC based embedded systems. The regions are illustrated

in the user satisfaction model in Figure 6.4. Resource allocation to applications in ACPA

result in more user satisfaction compared to applications in ADNP which anyway will drain

the energy source at a faster rate in the region, Ecurrent ≤ Ecritical. However, the secondary

goal of our methodology is to reduce the spread between the two curves in Figure 6.4. This

basically translates to the NoC layer attempting to run applications in ADNP while satisfying

the constraints of ACPA. Note that we implicitly assume that the applications in ACPA can

last longer in the region Ecurrent ≤ Ecritical when compared to all applications in A. This is

justified since text based applications such as chat, quick updates to social media platforms

etc. are less compute intensive and hence, consume lower energy. Further, the user of a mobile

system is aware of the existence of a minimal set ACPA from his/her own experience. The

objective of the NoC optimization is to allocate resources to maximize the user satisfaction

under these conditions.
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Figure 6.4: Sigmoid function for Energy modeling

6.5 NoC energy utilization analysis

The application model consists of a set of N applications, A = {Ai } , i = 0, 1, . . . , N − 1.

Each application, Ai, is implemented as a group of Ci communicating threads, T =
{
T ji

}
, j =

0, 1, . . . , Ci−1. We estimate the energy consumed over the life of an application by aggregating

the energy consumed during the buffering overhead of packets at each router node and the links

traversed in the path from source to destination over all pairs of communicating threads. For

each pair of communicating threads of an application Am, T pm and T qm ; p 6= q, that are mapped

onto the nodes of NoC, the aggregate energy consumption is calculated as below in Equation 6.8.

Emp, q = Ncycles ∗ Ebuffer + (Nhops − 1) ∗ Elink (6.8)

Ebuffer and Elink are the energy consumption of a single buffer and a single link in the NoC

router and interconnect fabric respectively. Nhops is the number of hops each packet travels

from source thread, T pm, to destination thread, T qm. Ncycles is the total number of cycles (in

the simulation) each packet takes to complete Nhops. Ncycles includes delays introduced by

congestion, VC allocation and competition for output ports. In the case of congestion free



www.manaraa.com

69

routing, the nodes and routers along the path of a packet form an extended pipeline to deliver

the packet to its final destination. Hence, Ncycles can be split into two components − stall

cycles, Nstall and hop cycles, Nhops as shown in Equation 6.9. Nstall accounts for the total

number of simulation cycles a packet may wait at intermediate routers before arrival at final

destination.

Ncycles = Nstall +Nhops (6.9)

Substituting Equation 6.9 in Equation 6.8 and rearranging terms, the aggregate energy for

a single packet can also be split into two components as in Equation 6.12.

Emp, q = (Nstall +Nhops) ∗ Ebuffer + (Nhops − 1) ∗ Elink (6.10)

Emp, q = Nstall ∗ Ebuffer + (Nhops ∗ Ebuffer + (Nhops − 1) ∗ Elink) (6.11)

Emp, q = EmNOC
p, q + EmSCHED

p, q , (6.12)

where, EmNOC
p, q = Nstall ∗ Ebuffer and

EmSCHED
p, q = Nhops ∗ Ebuffer + (Nhops − 1) ∗ Elink

EmNOC
p, q is the component of total energy which is incurred due to resource allocation policies

in the NoC layer. EmSCHED
p, q is affected by scheduling and placement policies at the application

thread layer. In this section, user satisfaction policy is developed to optimize EmNOC
p, q at the

NoC layer and hence, maximize user satisfaction by tuning VC allocation and arbitration to

prioritize packets of applications in the critical set in the region Ecurrent ≤ Ecritical of Figure 6.4.

The total energy consumption of the application, Am, over all the flows from all pairs of

thread communication in the NoC is given by Equation 6.13.

Em =
∑
Fm

∑
p, q

(
EmNOC
p, q + EmSCHED

p, q

)
(6.13)
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Fm is the set of all communication data flows between threads in the application Am. Sim-

ilarly, the total energy consumption of ACPA and ADNP is the summation over each individual

application in that set and is given by Equations 6.14 and 6.15.

EACPA =
∑

Am∈ACPA

∑
Fm

∑
p, q

(
EmNOC
p, q + EmSCHED

p, q

)
(6.14)

EADNP =
∑

Am∈ADNP

∑
Fm

∑
p, q

(
EmNOC
p, q + EmSCHED

p, q

)
(6.15)

By fine tuning resource allocation at the NoC layer, under-utilized buffers from applications

in ACPA can be reallocated in our scheme to benefit applications in ADNP under the conditions

that user satisfaction is not affected for applications in ACPA. Hence, energy in the region,

Ecurrent ≤ Ecritical, is not wasted on idle resources. This increases the user satisfaction for

applications in both sets ACPA and ADNP . We use Equations 6.2, 6.3 and 6.7 to allocate and

share VCs for applications in ACPA and ADNP .

6.6 Virtual Channel Allocation Heuristic

Virtual channel allocation policy implements shared VC policy between competing flows.

Sharing of VC dynamically increases the number of VCs available at each port. However, it

does decrease the depth of the FIFO queue for each flow. The VC allocation logic is modified

to reflect the sharing of virtual channels as shown in Figure 6.5. If a communication flow is

near the saturation region, the VC occupied by that flow can be shared with a competing flow

provided free buffer space is available. This technique maximizes the total user satisfaction of

both the flows.

A greedy heuristic which maximizes the user satisfaction for the flows is used to allocate

VC and arbitrate for output port at each router.

1. For each port, find the set of flows, S, competing for VCs. If cardinality of set S ≤

number of VCs, there are enough VCs for the set S. Else go to Step 2.
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UNUSED

SHARED

EXCLUSIVE

Head of flow 1 == true && 
VC_free == true

QoS_minimum == true  && 
competing flow == true

Tail of flow 1 == true
|| Tail of flow 2 == true

Tail of flow 1 == true
|| Tail of flow 2 == true

Figure 6.5: VC States for shared communication flows

2. Use Equation 6.6 to determine the user satisfaction at the router for each flow of set

S. Choose the subset of flows from set S which maximizes the sum of user satisfaction

subject to constraints in Equation 6.2.

3. Allocate VCs to the subset of flows chosen from Step 2.

4. Check if user satisfaction of the subset of flows chosen from Step 2 due to resource

allocation in Step 3 is in the saturation region of the sigmoid model.

5. If Step 4 == true, modify the state of VCs for this flow to be shared with a competing

flow that maximizes uses satisfaction. This step dynamically increases the number of

VCs by one. Else go to Step 1.

6.7 Experiments & Results

We use four simulator configurations to evaluate the effectiveness of the proposed scheme

on a 4X4 NoC network. Routers are modeled as ideal resources for the first configuration, Ideal.

The throttling factors are set to unity for the routers in the flow path in the network during

mapping of threads to NoC nodes. The next three configurations model a non-ideal router. A
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base case configuration, Base, of the simulator uses round robin allocation for virtual channels

and output port arbitration on the downstream router. The application threads do not have any

QoS guarantees. The third configuration, Qos, guarantees QoS for the video application threads

but other application threads do not have any QoS guarantees. The final configuration, usersat,

implements the ideas enunciated in this work. Sharing of VC is enabled for competing flows

when QoS guarantee is reached (saturation region). The results in Figure 6.6 and Figure 6.7

show the plot of average user satisfaction over all threads for the MPEG-2 and MP3 applications

for the four configurations. Figure 6.6 and Figure 6.7 shows the bar graphs for 4, 8, 16 and 32

VC configuration for each port of the router. Sharing of VCs for the usersat configuration can

at most double the VCs to maximize user satisfaction.
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Figure 6.6: Average user satisfaction for VC = 4,8

The results show that user satisfaction is maximum for the Ideal case since there is no

attenuation of flow bandwidth by routers in the communication path in the NoC network.

There is significant degradation in user satisfaction for the Base case due to the fact that all

threads from both applications compete equally for the router resources in round robin fashion.

In the Qos case, the video application threads have guaranteed user satisfaction of 0.7. This

is reflected in the figures above where the video application user satisfaction is more than

0.7. However, extra buffer resources allocated to the VC of video communication flow do not

benefit any other competing flows. The competing MP3 flow suffers in user satisfaction and
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Figure 6.7: Average user satisfaction for VC = 16,32

there not much improvement as compared to the Base case. The extra user satisfaction past

0.7 for the video application is in the saturation region. It does not result in significant user

satisfaction for the buffer or VC resources allocated. However, the usersat case proposed in

this work reallocated VC resources to MP3 flow by sharing VC with the MPEG-2 flow. The

user satisfaction of MP3 flow improves by 10% when VC = 4 and 11% when VC = 8 while still

guaranteeing a user satisfaction of 0.7 for MPEG-2 flow. When the number of VCs is increased

the user satisfaction improves overall. This is because more router resources are available for

flows and the effects are clearly demonstrated in Figure 6.7. The user satisfaction of the MPEG-

2 and MP3 applications in the usersat and Qos simulations are nearly the same in Figure 6.7.

Due to less contention for VC resources, the data flows from multiple applications do not suffer

as much degradation in bandwidth as in Figure 6.6. Hence, user satisfaction plays important

role in resource allocation when system resources are in demand from various applications

and under-utilization of resources are possible in the saturation regions of applications. It

should be noted that the 10% improvement is the aggregate of the user satisfaction due to

resource allocation at multiple routers in the communications flow path. The results definitely

demonstrate the effectiveness to harvesting extra resources in the saturation region of Figure 4.3

for maximizing user satisfaction.
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The goal of the next experiment is to evaluate the effectiveness of user satisfaction model

for energy optimization of NoC resources as discussed in Section 6.4. The energy source is

limited for the applications in this simulation configuration. Ecritical is defined arbitrarily as

20% of the total energy source. We consider two scenarios to validate the claims in Section 6.4.

In the first scenario, USECASE1, all application threads compete for resources using their

user satisfaction metric without regard to Ecritical. We expect the energy source to exhaust

faster due to the fact that applications can tie up resources in the region, Ecurrent ≤ Ecritical

(see Section 6.4). In the second scenario, USECASE2, a set of applications are designated

as the currently preferred set, ACPA and these are chosen to be less compute intensive com-

pared to the ADNP = {MPEG − 2,MP3} applications. These are synthetic applications,

ACPA = {TEXT1, TEXT2}, which mimic texting application. Hence, threads of these ap-

plications send few packets per communication and occupy comparatively less resources. Five

different simulation runs, RUN1 through RUN5, invoke applications at different frequencies

and order of execution. The scenario which can prolong the energy source and simultane-

ously, execute applications in both the set ACPA and ADNP is expected to maximize user

satisfaction metric. The energy consumption for each of TEXT1, TEXT2, MPEG− 2, MP3

application is estimated using Equation 6.13 for all possible placement of threads in the 4X4

NoC. The average of the energy, Eavapp, for all possible placement of an application is used as

reference to estimate the total fixed energy source value, Esource. The values for Erouter and

Elink are derived from the NoC router model proposed in [BWM+09]. The router model of

[BWM+09] is similar to the architecture used in this work. In our case, we arbitrarily choose

Esource = 10 ∗ (EavTEXT1 + EavTEXT2 + EavMPEG−2 + EavMP3). This implies that each of the ap-

plication can be invoked 10 times, assuming random placement, before the energy source gets

exhausted. In each of the scenarios, the user invokes the different applications the same number

of times but at randomly chosen simulation cycles. In USECASE1, the model discussed in

Section 6.3 is used to allocate VC and calculate user satisfaction metric. In USECASE2, the

energy optimization model discussed in Section 6.4 is used to allocate VC and calculate user

satisfaction metric such that user satisfaction for ACPA is maximum.
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The results of energy optimization for USECASE1 and USECASE2 are summarized in

the graphs of Figure 6.8 through Figure 6.12.
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The number of threads from all applications which miss the deadline due to the fixed

energy source getting exhausted is shown in Figure 6.8. x-axis shows the various simulation

runs and y-axis shows the fraction of threads which miss the deadline for USECASE1 and

USECASE2 compared to the total number of threads executed with unlimited energy source.

The user satisfaction model discussed in Section 6.4 results in lower number of threads missing

the deadline for USECASE2 due to the fact that buffers in VC can be efficiently allocated to
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applications in the set, ADNP , when less compute and communication intensive applications

are active in the region, Ecritical. Figure 6.9 also validates the previous conclusion further

by plotting the fraction of simulation cycles the energy source can last for USECASE1 and

USECASE2 compared with the number of simulation cycles with unlimited energy source.
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Figure 6.12: # Threads Missing Deadline in Ecritical region for two injection rates

The percentage of threads missing deadline for injection rate (40%) which is in the neigh-

borhood of the saturation of our NOC simulator acceptance rate is shown in Figure 6.12. As

the injection rates hover around the neighborhood of the saturation of NOC acceptance rate,

we observe that the user satisfaction model (USECASE2 in Figure 6.12) pushes more threads

to completion (on an average of 1%) compared to USECASE1. This is a desirable characteris-

tic of our model which comes to light during higher resource contention when NOC saturation

starts to set in. However, the limitations of user satisfaction model in the Ecritical region is

apparent for higher injection rates and we have presented the results in Figure 6.12 for 80%

network injection rate. Our model barely improves the thread completion rate due to heavy

contention for resources after network saturation and roughly half of the threads spawned miss

the deadline in the Ecritical region. This has a negative impact on user satisfaction as discussed

later in this section (Figure 6.13). The methodology in Section 6.4 extends the energy source

for an average of 18.8% over USECASE1. The average user satisfaction in the Ecritical region

is plotted in Figure 6.10 and Figure 6.11 for applications of USECASE1 and USECASE2

respectively for various simulation runs. The extension of energy source improves the user sat-
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isfaction over all the simulation runs as seen in Figure 6.11 for applications in the set, ACPA. It

also improves the user satisfaction of the MP3 application which is in the ADNP . This because

there are enough VCs which can be shared with MP3 communication flows in the Ecritical

region. However, in RUN4 and RUN5, the user invokes the MPEG− 2 application which has

a negative impact on the user satisfaction of TEXT1 and TEXT2 applications. We conclude

that in the region, Ecritical, the choice of applications affects resource allocation and hence,

energy consumption from the perspective of user satisfaction metric. Our model is successful

in allocating resources to applications in the ADNP set which definitely improves overall user

satisfaction without too much impact on the energy source.
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Figure 6.13: User satisfaction trends for scaled NOC sizes
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The trends in user satisfaction metric for the four VC allocation strategies are plotted in

Figure 6.13 by varying NOC sizes. Average user satisfaction is determined for injection rates

ranging from 10% to 80% for each NOC size. User satisfaction (usersat) based VC allocation

tends to outperform Qos and Base schemes for lower resources (small NOC sizes) and higher

congestion (higher injection rates). For small NOC size (4X4) and/or higher congestion (80%),

usersat is effective in reallocating resources in the saturation region. This results in better

experience for the user when the system is under tight constraints. Under medium injection

rates (40% and 60%), the four schemes perform equally well due to the fact that perturbation

in resource allocation has marginal effect of user satisfaction. A similar effect is noticeable for

medium sized NOC under light injection rates. usersat scheme is at par with other schemes

due to the added flexibility in scheduling threads on cores due to higher resource availability for

larger NOC compounded by low injection rates. Under higher injection rates (80%), the user

satisfaction contours separate farther away and overall, the usersat scheme performs better for

various NOC sizes. It can be observed that average user satisfaction is lower when the injection

rate is 80%. The NOC accepted traffic saturates at about 38% of the injected traffic. The packet

delay increases even with resource reallocation and hence, results in negative impact on user

satisfaction. Given plenty of resources (12X12 NOC) and lighter injection rates (10%), all

schemes perform equally well and the contours coincide for large NOC size seen in Figure 6.13.

The plots in Figure 6.13 qualifies the domain of usersat scheme’s effectiveness in terms of NOC

size and injection rate.
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CHAPTER 7. DYNAMIC BINARY TRANSLATOR FOR PolyNoC

FRAMEWORK

Dynamic binary translator (DBT) implementations manage dynamic code transformations

[BDB00, LCM+05]. A section of code is transformed for optimizing one or more application

parameters while maintaining the program correctness. Mobile OS frameworks use DBT for

isolating application execution for security, dynamic compilation of code and runtime optimiza-

tion of code sections. Android OS uses Dalvik [Dal] virtual machine for isolating application

execution context from other applications and uses Dalvik just in time compilation to optimize

code while the application is executing. PolyNoC should be capable of simulating applications

that use JIT like layer for runtime optimization. Integrating DBT framework in PolyNoC pro-

vides complete simulation ecosystem for design space exploration of heterogeneous multicore

architectures running Android/Linux like OS. This chapter provides details about integration

of our Tightly Coupled Monitoring (TCM) DBT framework in PolyNoC.

The architecture of PolyNoC simulation environment augmented with TCM framework is

shown in Figure 7.1. The main difference from the PolyNoC implementation in Chapter 5

is that applications are encapsulated in the TCM DBT runtime environment. In Figure 7.1,

the MPEG-2 application executes under the control of the TCM framework. TCM framework

takes control of the execution of MPEG-2 application by trapping calls to the polymorphic

layer. The MPEG-2 application also has access to internal states of the NoC layer, scheduling

and packet management layer. Internal states such as congestion information, flit rate can

be used in wrappers, introduced in Section 7.1, to further optimize the performance of the

application. Next, we discuss the details of TCM framework and enlighten the benefits of using

wrappers to access NoC internal states at runtime.
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Figure 7.1: PolyNoC with TCM Framework

7.1 Tightly Coupled Monitoring Framework

DBT mechanism is abstracted as a tightly coupled interaction between one or more trans-

formations and the corresponding code object in the TCM framework. Figure 7.2 illustrates

the abstract layers through which an application can interact with the Tightly Coupled Mon-

itoring (TCM) framework. Tightly coupled interaction of Transformation Execution Engine

(TEE) and Code Object Execution Engine (COEE ) in the DBT layer is the novelty of our

TCM framework. NoC layer events are stable over a small window. Tight coupling ensures

timely code optimization which depend on such events. Transformations are executed by TEE.

Any input states used by the transformations are requested by TEE from the TCM framework
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core. COEE executes code objects from application code. Code objects modified by TEE is

passed on to COEE for execution. Unmodified code objects from the application binary file

is directly executed by COEE. Program variables, register state and hardware machine state

of COEE are updated after execution of code object instructions. This novel abstraction en-

ables transformations to be triggered by run time state values in a small time window. TCM

framework core manages data structures for both TEE and COEE.

Transformation

Execution 

Engine

Code Object

Execution 

Engine

  Application Code   Translated Code

CODE 
OBJECT 1

CODE 
OBJECT 2

CODE 
OBJECT K

τ1 

τ2 

τ3 

τK 

Ω1

Ω2

Ω3

TRANSLATED 
CODE 

OBJECT 1

TRANSLATED 
CODE 

OBJECT 2

TRANSLATED 
CODE 

OBJECT 3

Transformations

TCM Framework Core

COEE

States

(PMU) 

TEE

States 

U
p

d
a

te

U
p

d
a

te
R

e
a

d

R
e

a
d

Trigger transformation

T
E

E
 D

a
ta

 s
tr

u
c

tu
re

s

C
O

E
E

 D
a

ta
 s

tr
u

c
tu

re
s

Transformed code 

objects

Transformed code objects

Figure 7.2: Tightly Coupled Monitoring Framework

Application code is interspersed with transformation wrappers to take advantage of the

TCM framework. Transformation wrappers are code segments which implement the trans-

formations. We use the term wrappers to signify that transformations wrap the code objects

and modifies it if needed. Inserting wrappers into application code requires two new key-

words to demarcate code segments implementing the transformation. Wrapper code section

is enclosed between the tags <wrapper code> and </wrapper code>. Wrapped code or code

object is enclosed between the tags <wrapped code> and </wrapped code>. Application code

is interspersed with wrapper code at the granularity of optimization required.
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For example, wrapper code can be inserted into the program code at function level, basic

block level etc.

Our framework simplifies specification of code optimizations. For example, loop index is

statically unknown to the compiler for the x86 code in Figure 7.3 but the index variable is

known dynamically before the loop code gets executed. The state of the loop index variable

is read by TEE and the appropriate wrapper code for optimizing the loop code is executed by

TEE using the new loop index information. The optimized wrapped code (the for loop code in

Figure 7.3) is then executed by COEE.

for( i = 0; i < N ; i ++)
c[i]  = a[i] + b[i] ;

<wrapper_code>
if(N > 10) 

{
target_wrapped =  

unroll_loop();

}

unsigned long unroll_loop()
{

//code for unrolling loop
}

</wrapper_code>

<wrapped_code>
for( i = 0; i < N ; i ++)

c[i]  = a[i] + b[i] ;
</wrapped_code>

Original source 
code fragment

Transformed code 
fragment with 
metawrapper

Figure 1

Figure 7.3: Pseudo wrapper code for loop optimization

Dynamic optimizations specified using wrappers in TCM framework resemble the program

code more naturally. Transformations look like regular functions in C language. Note that this

model of specifying optimization extends our framework to provide general monitoring functions

other than dynamic optimizations. For example, the stack pointer of the application can be

monitored in the wrapper to prevent buffer overflow attacks. This framework promotes the idea

of writing code for optimization using run time data available in a small time window before

the execution of wrapper code. Our framework’s tight-coupling enables such optimizations.
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7.2 Experiments & Results

To evaluate the effectiveness of wrappers in Android like framework, we have modified the

polymorphic MPEG-2 decoder application to work with the TCM framework of Section 7.1.

The congestion state of the router associated with the node executing the MPEG-2 application

thread is available as a shared variable through the TCM framework. The application thread

can access this variable to control the forking of new threads depending on the congestion status

of the NoC layer. Overall execution time of MPEG-2 application with wrapper is compared

for various network congestion conditions to understand the advantage of using wrapper. The

results are summarized in Tables 7.1, 7.2, 7.3 and 7.4. Under low network congestion (Tables

7.1and 7.2), there is not much difference in the execution times of the MPEG-2 application.

This is because the wrapper is not activated under low congestion. We expect the wrapper to

get activated under high congestion conditions to control the creation of new threads. New

threads worsen the congestion more by trying to push packets into the links when NoC layer is

already backlogged. We can see from Table 7.3 and 7.4 that the wrapper improves execution

time of the MPEG-2 application by 9.25%. This experiment shows that TCM framework is

beneficial for PolyNoC simulation environment and similar scenarios in real embedded system

development framework such as Android can be modeled with our tool.

Table 7.1: MPEG-2 Decoder Execution time 1 - PolyNoC TCM Framework

Injection rate = 10%

Execution time

(in simulated cycles)

Input Wrapper No Wrapper

tennis.mpg 25252 24345

football.mpg 18683 21980

garden.mpg 35623 33115

salesm.mpg 47813 45231
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Table 7.2: MPEG-2 Decoder Execution time 2 - PolyNoC TCM Framework

Injection rate = 20%

Execution time

(in simulated cycles)

Input Wrapper No Wrapper

tennis.mpg 26212 24023

football.mpg 18603 20139

garden.mpg 34893 34431

salesm.mpg 47433 45145

Table 7.3: MPEG-2 Decoder Execution time 3 - PolyNoC TCM Framework

Injection rate = 40%

Execution time

(in simulated cycles)

Input Wrapper No Wrapper

tennis.mpg 28320 30045

football.mpg 22381 29284

garden.mpg 35623 38216

salesm.mpg 53016 60457

Table 7.4: MPEG-2 Decoder Execution time 4 - PolyNoC TCM Framework

Injection rate = 80%

Execution time

(in simulated cycles)

Input Wrapper No Wrapper

tennis.mpg 35118 40217

football.mpg 23143 27329

garden.mpg 38415 40273

salesm.mpg 57007 66578
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CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Conclusion

User behavior is poised to become an integral part of embedded system design method-

ologies. It is imperative to model user behavior for optimal utilization of system resources in

mobile computing platforms. The rapid prominence of handheld devices and wearable com-

puting only adds to the urgency of exploring new directions in embedded system design. The

nature of mobile applications and multicore architectures further present complex design space

for designers to navigate. Mobile application are highly interactive and there is increased de-

mand on system resources during short bursts of usage. Heterogeneous multicore architectures

present compute resources with multiple energy-delay profile to execute application threads.

The choice of when to execute, what thread, on which compute resource to optimize a given

performance metric is the problem of scheduling.

In this thesis, we have developed a simulation environment, PolyNoC, to aid in the explo-

ration of heterogeneous multicore architectures for embedded system design. The applications

in PolyNoC are designed to be polymorphic with the goals of expanding the energy-delay space

from a few design points afforded by current multicore chips. A polymorphic scheduler in the

operating system layer is tasked with morphism selection for application threads and uses a

greedy scheme for maximization of user satisfaction at the application layer. We further propose

an user satisfaction model using the sigmoid mathematical function to model the limitations

of human audio visual system. This model drives resource allocation in PolyNoC with the goal

of user satisfaction maximization. We extend user satisfaction model to the router layer for

VC allocation heuristic. A uniform metric at the application layer and network layer removes

conflicts in optimization goals.
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8.2 Future Work

There are several directions to explore our proposed simulation environment and user sat-

isfaction model. We have listed future projects associated with this thesis.

• Exploration of NoC architecture by changing the resources (number of CPU, FPGA)

for a given set of morphisms of audio and video applications. The ideal set of compute

resources to satisfy a given user satisfaction model will provide insight into allocation of

silicon area to a specific class of compute resource.

• Metrics for mapping and scheduling application threads to compute cores are rife in

network on chip research literature. Mapping and scheduling are treated separately since

mapping is spatial and scheduling is temporal. However, from optimization perspective

such as minimizing energy consumption, both issues have to be considered in conjunction.

Drawing idea from relativistic physics, metrics which combine time and space can yield

invariants which better optimize performance metrics. The interval in special relativity

is an invariant, dS2 = dt2 − dx2 − dy2, for a two dimensional space transformation. dt is

equivalent to scheduling and abstracts the temporal characteristics of a specific scheduling

policy. dx and dy can represent the mapping of threads to the two dimesional space of

compute cores in the NoC. It will be interesting to explore this metric idea.

• The sigmoid function is used as mathematical representation of user satisfaction. The

shape of scaled Sigmoid ( 1
1+e−t ) resembles a cumulative distribution function. Differenti-

ating the sigmoid gives the probability distribution function, e−t

(1+e−t)2
. The shape of the

pdf is very close to a bell shaped curve of normal distribution. User satisfaction model

can be viewed as a cdf such that probability (P (Y ≤ y)) that a given fraction of users

(y) are satisfied for a specific resource allocation. Alternatively, the pdf may represent

the distribution of the perception of HAVS for different resource allocations for various

users. This is not surprising. Human physical characteristics such as height, weight follow

bell shaped curve. A theoretical foundation for user satisfaction may emerge from these

observations.
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